T

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product s distributed, Apple will replace the documentation or media at no
charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day period
after you purchased the software, Apple will replace the applicable diskettes and documentation
with the revised version at no charge to you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your authorized Apple
dealer. Return any item to be replaced with proof of purchase to Apple or an authorized Apple
dealer.

Limitation on Warranties and Liability

Even though Apple has tested the software described in this manual and reviewed its contents,
neither Apple nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As aresult, this software and
manual are sold “asis”, and you the purchaser are assuming the entire risk as to their quality and
performance. In no event will Apple or its software suppliers be liable for direct, indirect, incidental,
or consequential damages resulting from any defect in the software or manual, even if they have
been advised of the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you. .

Copyright

This manual and the software (computer programs) described in it are copyrighted by Apple or by
Apple’s software suppliers, with all rights reserved. Under the copyright laws, this manual or the
programs may not be copied, in whole or part, without the written consent of Apple, exceptin the
normal use of the software or to make a backup copy. This exception does not allow copies to be
made for others, whether or not sold, but all of the material purchased (with all backup copies) may
- be sold, given or loaned to another person. Under the law, copying includes translating into
another language.

You may use the software on any computer owned by you but extra copies cannot be made for this
purpose. For some products, a multi-use license may be purchased to allow the software to be
used on more than one computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Apple dealer for information on multi-use licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software described in this
manual, even if you have returned aregistration card received with the product. You should
periodically check with your authorized Apple Dealer.

© Apple Computer, Inc. 1982
20525 Mariani Avenue
Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.
Reorder Apple Product Number A2F2116

Part | Written by Joe Meyers of Apple PCS Publications Department
Part Il Written by Bruce Tognazzini of Apple PCS Application Software Department

Apple lle

Design Guidelines

(il
[0}

Contents

Introduction
Software
New RESET Features
New Apple 80-Column Text Cards
Hand Controls and the APPLE Keys
New Apple lle Firmware
Peripheral Card Firmware
BASIC Protocol
Pascal 1.0 Protocol
Pascal 1.1 Protocol
Hardware

NPRAPRWONN= 2 2

9 Introduction
10 Good Human Interfaces: So Often Elusive
10 A Planning and Testing Methodology

10 Planning: the User Profile

14 Testing

19 Goals

19 Simplicity

19 Consistency

20 Efficiency

20 Self-teaching

20 Speediness

21 Minimum Strain on the User’'s Memory

21 Honesty

21
22
22
24
25
25
26
30
30
34
35
35
37
38
38
38
39
39
40
42
43

General Program Structure

Keep It Simple
Make It Familiar And Intuitive
Input
The (Apple Il BASIC) Blinking-box Cursor
The (Pascal) Solid-box Cursor
The New Insert/Delete Cursor
Cursor Movement with No Action Taken
Keyword Matching During Input: the Disambiguator
“Press RETURN to continue”
Displays with Several Input Statements
Errors
Defaults
Displays
Inverse, Flash, Focus
Vocabulary
Title Pages
Help
Menus
Keyword Displays
Keep Them Informed When You Are Away

About This Guide

This guide is divided into two parts. Part | contains recommendations to
software, firmware and hardware designers who want their products to
work smoothly with the Apple lle, as well as the Apple Iland Il Plus.
Theserecommendations pertain to the interface between Apple I
Series computers and the products thatare to work with them.

Part Il pertains to the interface between software products and their
human users. The recommendations in this section of the guide apply to
designers of software for Apple llis as well as Apple lls. The user
interface guidelines derive from the experience of countless Apple Il and
lllusers, as observed by more than a dozen computer and teaching
professionals. These guidelines should make it easier for both
programmers and users to create and benefit from the tools that Apple
computers put at their disposal.

Part |
Product Design Guidelines

Introduction

This section contains guidelines for designers of software, peripheral
card firmware, and hardware intended for use with the Apple lle. Also
refer to the sections of the Apple lle Reference Manual (Apple Product
Number A2L.2005) pertinent to the product you are designing.

Software

Most of the software guidelines pertain to four new features of the
Apple lle:

1. The new RESET features and their implications.

2. The Apple lle 80-column text cards and the need to check for the
presence of such a card and turn it on and off at appropriate times.

3. TheoPEN-APPLEand SOLID-APPLE keysand the fact that they
are electrically connected to the pushbuttons of hand controls #0
and #1, respectively.

4. The new firmware, including enhanced Monitor program functions,
expanded keyboard ROM map with lowercase characters, and
twofold video display ROM map for primary and alternate character
set display.

The Apple lle has all 64K of its memory in RAM. Areset now affects the
contents of what used to be the “language card” area of main memory.

1. Do notrequire the use of the RESET key during program operation
unless youarenot concerned that the bank-switched RAM (former
language card addresses) will be switched out.

2. Have BASIC or assembly language programs start up using the
OPEN-APPLE CONTROL-RESET sequence rather than PR#s (slot s
for the startup disk drive). This recommendation is related to the
requirements of the new Apple 80-column text cards.

These guidelines apply to BASIC and assembly language programs and
their calls to Monitor service routines.

1. Have any greeting program'’s first action be to determine if an
80-column text card is in the system (see Peripheral Card Firmware
section below for identification methods).

2. Make sure thatan 80-column cardisinstalled before attempting to
turn it on; otherwise, unpredictable system conditions may result.

3. Toturnonthe Apple lle 80-column firmware, use PR#3 or the
equivalent. The Apple 80-column firmware is associated with slot
3 for compatibility with the Apple Pascal Operating System.

4. Donotuse PR#0 to turn off the 80-column firmware. To turn it off,
issue a CONTROL-U (NAK character; decimal code 21).

5. Never have aprogramissue a PR#0 or IN#0 while the 80-column
firmware is active.

6. Before sending output to devices other than the video display, issue
aCONTROL-L (Form Feed character, decimal code 12) to clear
the screen, then a cONTROL-U to turn off the 80-column firmware.

7. If the 80-column firmware is active, look at location 49152 ($C000)
directly to check for akeypress. If you use the BASIC GET
command or the Monitor KEYIN routine, each Es ¢ keypress will be
executed before its modifying escape code can be retrieved.

8. Ifthe 80-column firmware is active, a program should not attempt to
display flashing lowercase characters; they are not available in the
alternate character set.

9. Ifyour software turns on the 80-column firmware, be sureitturns it
off before ending.

The Pascal Operating System automatically checks for the presence of
an 80-column text card in slot 3 or the AUX CONNECTOR slot, and turns
on the 80-column firmware if such a card is present.

Thenew 0PEN-APPLE key is connected to the pushbutton of hand
control #0,andthenew SOLID-APPLE keyis connectedtothe
pushbutton of hand control #1. Therefore, do nothave a program
check for the absence of hand controls by checking whether both
pushbuttons have been pressed. Instead, have the program wait for a
count of 512 (twice the normal count) and see if the hand control timer
has timed out. If not, no hand controls are connected.

The Apple lle Monitor has been carefully rewritten to maintain all the
same entry points as those published in the original Apple Il Reference
Manual. (The same entry points are, of course, alsolisted in the

Apple lle Reference Manual.) Atthe same time, the Monitor screen-

handling routines have been changed to accomodate the requirements
of 80-column display.

The keyboard ROM map now features lowercase characters as well as
several characters not directly available on the Apple Il and Il Plus
keyboard.

To adapt software to these new features, follow these guidelines:

1. Either avoid performing checksums on the resident firmware or be
prepared to accept the checksum outcome of each model of
Apple Il that the software will run on.

2. Make sure that the programis designed to recognize lowercase
characters or to convert them to uppercase as necessary.

3. Make sure the program reacts appropriately to the alternate single-
quote character (decimal code 96) now on the keyboard, as well as
the more commonly used single quote character (decimal code 39)
that has always been present on Apple Il keyboards.

4. Programs that compensated for the absence of certain characters
(for example, \ or |) do not need to do so for the Apple lle.

5. Ifaprogram uses Monitor input/output routines, it should not use the
80-column software switch at location 49165 ($COO0D).

6. BASIC programs that use 80-column firmware should POKE
location 36 with tab locations rather than attempting to do ““‘comma
tabbing.”

7. Any program that uses 80-column firmware cannot also display
flashing characters. Flashing characters are not available in the
alternate character set, whichis the set the 80-column firmware
uses.

Peripheral Card Firmware

Any peripheral card that is to work on the Apple lle should have firmware
that takes into account the protocols of BASIC, Pascal 1.0, and Pascal
1.1.Pascal 1.1 protocols were purposely made flexible enough to meet
the requirements of future versions of Pascal, extending the usefullife of
peripheral card firmware.

These protocols are not unique to the Apple lle, but rather are published
here to make it easier for peripheral firmware designers tofind all
requirements in one place.

The BASIC protocol is very simple; it requires that three entry points be
found at fixed locations for a card in slot s:

Address Contains

$Cs00 initialization routine entry point
$Cs05 input routine entry point
$Cs07 output routine entry point

There are also three entry points for firmware cards under the Pascal
1.0 protocol:

Address Contains

$C800 initialization routine entry point
$C84D read routine entry point
$CIAA write routine entry point

New peripheral cards can be “accepted” into the Pascal 1.0 system by
using these entry points, as well as having the values $38 at location
$Cs05and $18 at $¢s 07 (see Device ID discussion below).

Pascal 1.1 has amore flexible setup and supports more input/output
functions than BASIC or Pascal 1.0. It makesindirect calls to the
firmware in a (new) peripheral card through addresses in abranch table
in the card’s firmware. It also has facilities for uniquely identifying new
peripheral I/O devices.

The I/O routine entry point branch table is located near the beginning of
the $Cs00 address space (s being the slot number where the peripheral
cardis installed). This space was chosen instead of the $c800 space,
since under BASIC protocol the $¢s00 spaceisrequired, while the
$C800 space is optional.

The branch table locations that Pascal 1.1 uses are:

Address Contains

$Cs0D initialization routine offset (required)

$CsOE read routine offset (required)

#CsOF write routine offset (required)

$Cs10 status routine offset (required)

$Cs11 $0 0 if optional offsets follow; non-zero if not
$Cs12 control routine offset (optional)

$Cs13 interrupt handling routine offset (optional)

Notice that $¢s11 contains $00 only if the control and interrupt
handling routines are supported by the firmware. Apple Il Pascal 1.0
and 1.1 do not support control and interrupt requests, but such
requests may be implemented in future versions of the Pascal BIOS
and other future Apple Il operating systems.

Here are the entry point addresses, and the contents of the 6502
registers on entry to and on exit from Pascal 1.1 1/O routines:

Addr. Offset for X Register Y Register A Register
$Cs0D Initialization

On entry $Cs $s0

On exit error code (unchanged) (unchanged)
$CsOE Read

Onentry $Cs $s0

On exit error code (unchanged) character read
$CsOF Write

Onentry $Cs $s0 char. to write

On exit error code (unchanged) (unchanged)

Status $Cs10
Onentry $Cs $s0 request (0 or 1)
On exit error code (changed) (unchanged)

Notes: Request code 0 means, ““Are you ready to accept output?”’ Request
code 1 means, “Do you have input ready?” On exit, the reply to the status
request is in the carry bit: carry clear means “No”’; carry set means “Yes.”

Pascal 1.1 uses four firmware bytes to identify the peripheral card. Both
the identifying bytes and the branch table are near the beginning of the
$Ccs00 ROM space. The identifiers are listed in the following table.

Address Value

$Cs05 $3 8 (standard BASIC requirement)
$Cs07 $1 8 (standard BASIC requirement)
$Cs0B $01 (generic signature of firmware cards)
$Cs0C $ci (device signature; see below)

The first digit, ¢, of the device signature byte identifies the device class.

Digit Class

$0 reserved

$1 printer

$2 joystick or other X-Y input device
$3 serial or parallel I/O card

$4 modem

$5 sound or speech device

$6 clock

$7 mass storage device

$8 80-column card

$9 network or bus interface

$A special purpose (none of the above)
$B-F reserved for future expansion

The second digit, i, of the device signature byte is a unique identifier for
the card, assigned by Apple Technical Support. For example, the
Apple lle 80-Column Text Card has a device signature of $88.

Although version 1.1 of Pascal ignores the device signature,
applications programs can use them to identify specific devices.

Hardware

The Apple lle Reference Manual specifies the overall physical and
electrical characteristics of peripheral cards disigned for use with the
Apple lle computer. In additionto these requirements, some detailed
guidelines apply:

1. Tomaintain a consistent installation procedure as well as avoid
interference with adjacent cards, always design cards so their
component sides face away from the power supply case.

2. Avoid designs that require connection to chip sockets on the main
circuit board, as futurerevisionsto the board may make such cards
obsolete.

3. Do notrequire that a card be installed in slot 3 if its intended
application caninvolve a text or video card in the AUX CONNECTOR
slot.

4. Cards should not dissipate more than the amount of power specified
in Chapter 7 of the Apple lle Reference Manual.

5. Cables should use 9-pin or 25-pin “DB” style connectors. The four
19-pin openings (1 through 4) on the back panel are reserved for
use with disk drives.

6. Internal cables should preferably connect to the keyboard end of
the card. This gives the user more freedom in selecting a slot to
install the card. It also alleviates strain and bending on the cable.

7. Cards that have firmware on them should be identifiable according
to the protocols outlined in the Firmware section preceding this.

Part Il
User Interface Guidelines

—

Introduction

The following guidelines and comments have been written for a diverse
audience.

As a professional buyer and sellers of software, you can gain an insight
into the elements that willmake a program most useable to your
customers. While this documentis aimed primarily at program
designers, you can pick up a “‘feel” for interface design. Is your difficulty
in using a program because the designer failed to make it “friendly, ” or is
it only because you lack specific experience in the subject of the
program? Are the customers who will be buying the program from you
well versedin that subject area? If not, they will have the same trouble
you are having.

As a novice programmer, you will find not only specific information on
how toimplement certain guidelines, but a fair amount of philosophy of
design that should be of help in areas of design not covered.

The expert program designer may skim past what has become the
obvious—don’t just give error numbers instead of meaningful error
messages—to find standard layouts and key-function definitions for
inputs, menus, command structures, and instruction pages.

You can explore additional BASIC basics of human interface design for
the Apple in

Apple Backpack, Humanized Programming in BASIC, by Scot Kamins,
Ph.D., published by Byte Books of McGraw-Hill.

There are two primary functions of a good human interface design: make
the product easyto learn, and make it easy to use. We all know that our
customers can learn touse our programs faster if they look and act like
other programs with which the customer is already familiar.

When the Apple Il and Apple /Il series computers first came on the
market, software developers experimented with a wide variety of
interface designs. Some were good, some were bad. All were
somewhathardto learn, because all were unique. As time went on,
though, the natural personalities of the keyboards, displays, and
computers led to aremarkable similarity of approach to certain basic
problems of ease of use.

This document is drawn from applications programs written both within
and without Apple. It further relies on human interface research projects
inside Apple and standards developed by independent software
developers.

10

We are notin any sense trying to dictate what program designers shall
and shall not do within their own programs. Each program has its own
needs; each guideline will have its own exceptions. Programs should not
be judged by whether they adhere to each specific guideline presented
in this manual; they should be judged by whether they are reasonable to
learn, functional to use, and whether they get the job done.

What we are offeringis a set of interface guidelines and standard key
definitions to which we and many independent developers are
committed, guidelines and definitions your customers will know and be
comfortable with. We are releasing training material that will prepare your
customers to use programs that work in the manner described in this
document.

Good Human Interfaces:
So Often Elusive

The human interface of a program is as vital to its success in the
marketplace asits accuracy in performingits task. An otherwise well
designed, powerful piece of software or hardware is nearly uselessif itis
poorly human engineered. As Dr. Frank Gilbreth, the father of time and
motion study said: “Itis cheaper and more productive to design
machines to fit men rather than to force men to fit machines.”

Human interface design should come into play from the very beginning.
A good design is no mean task: expect to expend a great deal of design
and programming effort toward a smooth interface. For most programs
with a good human interface, the design of that interface consumes
more design time, is more prone to bugs, and is hardertotestthanany
other part.

Apple is in the process of making available a number of packages of
routines that should make this task easier. Within the packages are the
menu drivers and input routines described in this document. Exact
publication times are being set as this document goes to press.

A Planning and Testing Methodology

In order to properly address the needs of the users, you must first know
who they are and what their needs are. Software design should begin
with a user-profile study. This study should cover the following three
phases:

1. Select the target audience. Begin your human interface design by
identifying your target audience. Are you writing for businesspeople
or children? Will your audience consist of people relaxing at home or
accountants under severe time constraints?

2. Ascertain the level and limitations of their pre-existing knowledge.
You should have an understanding ofhow much the target users
know about:

A. using the Apple computer
B. the general subject matter your program deals with.

3. Identify their needs. Once you have an understanding of the
knowledge and limitations of the users, you can then figure out what
types of information and level of support the the program will have to
supply.

Figures 1 and 2 are mythical examples of two possible user-profiles for
programs that fill the exact same function: tax planning. Even though the
task performed, the formulas used, the raw data required are identical,
the programs that would result from the two user-profiles might bear little
external resemblance.

The “research’” quoted in the examples is ficticious—do not start
writing atax planner based onit. (The “case histories” in this document
are real; the samples of display and document designs are fictitious.)

Carrying out an early investigation such as the ones above requires a
minimum of time and can save you man-months of work later on. The
reports need not be works of art; itis only important thatevery member
of thedesignteam have a clear picture of who the audience for this
product will be.

Make sure you consider all your users:

In a data-base program recently developed for a computer with large
mass storage, no effort was spared in making every section of the
program as “friendly” as possible. When a particular task proved
somewhat difficult to learn or use, the task was reduced by picking up
bits and pieces of it within other tasks. The program slowly drifted
toward being consistently somewhat difficult to learn and use.

(Text continued after figures)

11

F]gure 1 Big, Big Business Software Development Corporation

Houston, Texas
"Get the Big, Big Solution to your Little 0ld Problems"

Professional Tax Planner User Profile Study
July 17, 1983

User: CPA or Public Accountant

Anticipated knowledge of Apple computers: none. (The accountant
may well have purchased the system just because of our program.)

Assumed knowledge of subject matter: Expert
Needs:

1. Staged learning curve. Must feel comfortable in a
minimum time. Extended features can be picked up later.

N
.

Facility. Must be able to create and edit scenarios
quickly.

3. Clear instructions and error messages. User may have
never touched a computer before. Help should be aimed
toward problems in the use of the system, rather than
explanations of the difference between Short-term and
Long-term capital gains.

4, Professional appearance. Accountants will be using
this package not only to help their clients, but to
impress them., The vocabulary used on the display and in
printed reports should be serious and professional. It
may contain accounting jargon in areas that will not
cause confusion to clients. The accountant must be
protected against embarrassing errors (and error
messages); he may have a client sitting beside him.

5. Supplementary Features: accountants surveyed currently
add or subtract amounts from the "accurate" figures
produced by tax planners. Such items as a rough
estimate of state tax liability may need to be figured
into reports. Provide this facility.

(o)}
.

Accountants are habitual users of adding machines:

they may be expected to do all intermediate calculations
on their own adder. No calculator function need be
provided.

12

Aunt Treig’s Software and Snowshoe Company

Petersberg, Alaska
"We’ll never leave you out in the cold"

Personal Tax Planner User Profile Study
December 21, 1982

User: John 0. Middle to Upper—income Public

Anticipated knowledge of Apple computers: owner with some
experience. (Research indicates that tax planning programs
do not stimulate an initial computer purchase: people who
already own the computer are buying the packages.)

Assumed knowledge of subject matter: None
Needs :

1. The prompting and documentation need to be tutorial:
the user must be guided into finding the necessary
information to enter into the program, carrying out the
kind of explorations with the program that will be most
beneficial, and then suggest where the user should go
from here.

2, Clear content verification and error messages.
"Unlikely" data should be confirmed by user. Help
should be aimed toward problems in understanding the
subject of taxes.

3. Appearance and use of accounting jargon.
Non-professionals will be using this package. The
vocabulary used on the display and in printed reports
should be non-intimidating and not filled with
accounting jargon.

~
.

User will probably use the program only a few times per
year. There must be a minimum learning curve, even at
the expense of reduced power and facility. A
menu-driven format should certainly be considered as a
first cut.

5. The user has to be asked for a lot of pre-computed
figures: wuse an expression-evaluator input to allow
them to add, subtract, multiply, and divide during
input.

13

14

The designers had never considered who their audience was beyond
their being “office workers,” but when problems showed up during
testing, they sat down and did a user profile. What they found was that
there would be three separate users of the system:

1. The data-entry persons. These folk would be proficient typists who
initially would be expected to enter a great deal of pre-existing
information. They mightbe temporary help, or they might be people
who normally performed a different job. Their needs were for an
interface that is quick to learn and easy to use.

2. The decision makers. These people would be expected to draw
information from the system, both by calling up data on the display
and by generating reports. They could be expected to be habitual
users of the system: they could handle along but gentle learning
curve that would give them progressively more power.

3. The key operators. These people are the ones who, in real life, read
the manuals. They can be expected to spend some time with the
system initially and can be expected to learn how to perform the
more technical operation and maintenance tasks of the system.

Once the users of the system were identified, once their individual
needs were identified, the designers were able to “unbalance’ their
equally-difficult interface, so that each user had alevel of difficulty
consistent with their skills and the amount of time they could spend
learning the system.

Oncethe users have been profiledand a prototype built, itis time to
begin testing.

Human interfaces are not made; they evolve. Software designers are
simply too close to their product, their computer, and have put up with
the most abysmalinterfaces themselves for too many years to be able to
outguess the naive user. Products must be repeatedly tested on “real
people”. (“Real people” means the target audience: as soon as you find
yourself sitting in ameetingwith other computerists, allannouncing what
users will or will not feel/think/do, you are in trouble. Build the prototype
and find out.)

The job of the designer is to do her best to predict the response of the
user; the job of the user is to do just the opposite.

Human interface testing is quite different from the kind of exhaustive
“boundary condition” testing used to uncover bugs. You should begin
testingas early as possible, using drafted friends, relatives, and new
employees, to uncover the really big holesin your design. As you get
closertoafinished product, tryit out on larger groups drawn from the
target population.

It is imperative that the designers actually watch people use the
program. Do not just send off copies of the program and expect written
responses. Get the users and the designers in a quiet room together.

Our testing method is as follows. We set up aroom with five to six
computer systems. We schedule two to three groups of five to six users
atatime to try out the systems (often without their knowing that it is the
software rather than the system that we are testing). We havetwo of the
designers in the room. Any fewer, and they miss alot of what is going on.
Any more and the users feel as though there is always someone
breathing down their necks.

Theinitial ground rules are that no questions willbe answered, asby the
time the formal testing begins, we can supply a draft of the manual.
(Usually by the second group, some glaring defects in the interface have
shown up, and we have to give them help getting past the stumbling
blocks.)

Ninety-five percent ofthe stumbling blocks are found by watching the
body language of the users. Watch for squinting eyes, hunched
shoulders, shaking heads, and deep, heart-felt sighs. When a user hits a
snag, he willassume it is ““on account of he is not too bright”: he will not
reportit; he will hide it. Make notes of each problem and where it
occurred. Question the users at the end of the session to explore why
the problems occurred. Do not make assumptions about why a user
became confused. Ask him. You will often be surprised tolearn what the
user thought the program was doing at the time he got lost.

We have found that prepared questionnaires handed out at the end of a
session are of little value: you will seldom predict the problem areas
before testing, and users will lie to spare everyone’s feelings. (If you had
figured out the problem areas, you would have already fixed them.)

Generally, two or three groups on one occasion is more than sufficient:
patterns willemerge almost immediately. You should haveatleast one
more bank of testing after any major revision; as the next example
shows, one often jumps out of the frying pan, into the fire.

16

The True Anecdote:

Herein follows a true anecdote that illustrates how difficult the most
simple human interface issue can be, and why thorough testing onreal
people is so important. (If you dislike true anecdotes, please skip ahead

to “Goals.”)

As we tune in, the authors of APPLE PRESENTS...APPLE, both of
whom pride themselves on clever interface design, have anguished for
hours over difficult passages in their program. It was to turn out their
guesses were quite accurate in said difficult passages. Itwas the
simplest question of all that caused all the problems...

Problem:

User profiles:

Test user
profiles:

First design:
Prompt:

Anticipated
problem:

First attempt:

Prompt:
Failure rate:

Reason:

in APPLE PRESENTS...APPLE, an Introduction to
the Apple lle Computer, the training program for
teaching fundamentals of using the new Apple lle
computer, find outif the user is working with a color
monitor.

new owner, customer in a computer store, or
member of a class learning to use Apple
computers.

customers in acomputer store, non-computerists
in a classroom environment, friends, and relatives.

A color graphic would be displayed.
“Are you using a color TV on the Apple?”’

Those who were using a monochrome monitorin a
classroom or computer store situation wouldn’t
know whether the monitor was black and white or
was color with the color turned off.

A color graphic was displayed.
“Is the picture above in color?”
25%

As anticipated, butincorrectly overcome, those
seeing black and white thought their color might be
turned down. They didn’t answer the question
wrong; they turned around and asked one of the
authors whether the monitor in question was color
or not. A decision was made that the authors could
not be shipped with each disk.

Second attempt:

Prompt:
Failure rate:

Third attempt:
Prompt:
Failure rate:

Reasons:

Fourth attempt:
Prompt:
Failure rate:

Reasons:

Fifth attempt:
Prompt:

Failure rate:

A smaller graphic with large-letter words in their
own vivid colors was substituted:

GREEN BLUE ORANGE MAGENTA
“Are the words above in color?”
color TV users: none
black and white monitor users: none
green-screen monitor users: 100%

The graphic remained the same.

“Are the words above in more than one color?”
color TV users: none

black and white monitor users: 20%
green-screen monitor users: 50%

the black and white monitor users who answered
incorrectly admitted that they did so on purpose.
(Our methods for wringing their confessions shall

remain proprietary.) 50% of the green-screen folk
considered that they were looking at both black and

green —two colors — and answered the question
accordingly.

Same display of graphic and colored text

“Are the words above in several different colors?”
color TV users: none

black and white monitor users: 20%
green-screen monitor users: 25%

By this time, the authors were prepared to supply
everyone who bought an Apple with a free color
monitor, just so we would not have to ask the
question. It turns out thataround 20% of the people
were notreally reading the question. They were
responding to:

“Are the words above, several different colors?”

Same display of graphic and colored text

“Do the words above appear in several different
colors?”

none.

17

18

In case it appears the authors were simply dull fellows, beitknown that
this was a fully-interactive training program in excess of 100K, and this
was the only interface issue that required more than one correction. It
clearly exemplifies how eventhe most careful designers can totally miss
when guessing at how users are going to respond.

Had the designers not tested the program, it is probable that dealers
would not have used the program in their showrooms, as they would
have wearied of telling potential customers that they were/were not
usingacolor TVandthatthe APPLE PRESENTS... APPLE program was
being very stupid to ask the question like that. (Potential customers, of
course, wouldn’t have fallen for such an explanation: they would have
known it was the computer that asked the question, and everyone
knows that one should always buy the computer that asks good
questions.)

Itis vital that programs and manuals be tested early and often with users
from the target audience; this testing should be an integral part of any
testing plan. This testing seems like a lot of extra effort, but in practice, it
really isn’t, beyond the mechanical difficulties of getting your equipment
and test group together. (Computer stores, colleges, and shopping
centers are often goodrandom-testing locations.) The above testing
cycles took only four days: the first two days were on-site, usingnew
Apple employees. Only two days of testing required any set-up work at
all, and the overall improvement to the product was clearly worth the
effort.

Even if the interface had not changed at all, it would have been worth it
justto be able to ward off all the self-proclaimed experts with their (day-
after-going-to-production) comments of “Boy, | sure wouldn’'t have done
it that way . Alotof people out there are gonna have trouble.” Whatjoy to
turn to such people and announce with a clear conscience, “Well, we
tried it out on 109 people, and they all sailed through with flying colors.”

Goals

User interaction should be simple and easy to remember. Spend the
necessary time to design a user interface that presents the best tradeoff
between alternate design issues.

Once the user has become basically familiar with the human interface, if
she guesses at an unknown response, she should be correct 95% of
the time.

Simplicity is discussed in detail in the next section, General Program
Structure.

BASIC: When a package contains several programs on a diskette, the
programs should always be selectable by the user viaa menu display. The
user should not have to RUN (or worse, BRUN) individual programs in
immediate mode to get the package to function. Each program should end
by causing a ‘“menu’’ program to be run, which should provide the
appropriate menu display. The menu program should be a simple program
which displays a menu of all programs to which the user will be given direct
access, and stores information on the environment in which it runs; for
example, it can set any HIMEM: or LOMEM: required by a program on its
menu. An example of this is INDEX on THE SHELL GAMES diskette.

All programs written for a given computer should have as great a
commonality as is practical. The purpose of these guidelines and
standards is to achieve a level of consistency across all products
designed to run on the Apple, a level that will make learning your product
easier, but not be so rigid as to stifle your ability to create the specific
human interface best suited to your particular application.

All programs produced by a given software house should perform the
same function in the same way. The same key sequence must not do the
opposite thing in different products (E=edit, E=eradicate). Many
software houses have their own guidelines, guidelines from which we
drew in preparing this document. These individual guidelines tend to
outline infar greater detail the program “personality” that the software
house wants to project. If you have not yet put together such a
document, may we suggest you do so. It is a very effective way to
eliminate those interface battles that tend to occur about three days
before release to production—or three days after.

All software should be self-consistent: menu formats should be identical.

If GET or READKEY is used for one input, it should be used for all inputs.
If the LEFT-ARROW key deletes characters in one part of the program, it

19

should delete characters in all parts of the program. If you are working on
alarge project, be sure to spend enough time in team meetings being
sure that everyone is on the same track—alltoo often the three or four
sections of a program end up with an entirely different “feel.” Atthe
same time, avoid rigidity: human interfaces must be tested onreal
people. The agreed-upon interface at the beginning will undoubtedly
need changing, once you try it out on real people.

The user should be able to perform the desired task inaslittle
(perceived) time as possible, with the minimum (perceived) complexity.
Match the program to the skill level of the user. If you are doing a pricing
program for a shopkeeper, do not ask her what her historic elasticity of
demand has been without letting her know what it is and giving her the
tools to estimate it. (Also, the question may be unnecessary: the fact
that you asked it in a similar program you wrote for a Fortune 500
company is no reason to ask it of a shopkeeper.)

20

Often there is a trade-off between ease of learning and ease of use.
Carefully balance your decisions: if the program is too difficult to learn,
salespeople will not learn it and, thus, not sellit. If endless instructions
and voluminous menus make it slow and cumbersome to use, people will
get frustrated and tell their friends not to buy it.

You will find a number of guidelines devoted to overcoming this problem.
Both syntactic and content help should be available at the point at which
itis needed; designers are successfully doing that without encumbering
the experienced user. See: Help and Menu. Many designers have
sucessfully created a multi-tiered interface. See: Novice/expert modes.

Actual speed of operations is important, but perceived speed is even
more important. It may seem important to conserve keystrokes, butitis
more important to conserve “brain strokes” and design the interface so
that there is anatural flow. A more important goal is to reduce the amount
of unproductive time, which is time spent deciding how to perform the
desired task rather than time spent performing the task. This concern
should permeate the entire design process.

React to user’s inputimmediately. A user will interpret any delay of more
than a few tenths of a second after he has pressed RETURN to mean

that either the program or the user has made an error. If you need to
make a computation, first acknowledge that you have accepted the
input.

In training or educational software, it is doubly important to react
immediately to test questions. The greatest retention of knowledge
occurs when response occurs either within one second or not until the
end of the entire test. Apparently, waiting five to ten seconds for a
correct/not correct judgement is so frustrating that people lose
involvement with what is going on.

Programs that are not used literally every single day will be forgotten.
Users will not remember command words, the names of their files, nor
the fact that youare accepting data not with RETURN, but with CTRL-V.
(Violet was the name of your very first computer science teacher.)

Computers are notoriously good at remembering the above type of
information. Share it with your user: make sure the information needed is
available where and when needed.

Do not lie to your users. Do not say, “File loaded” when the file is not
loaded, only the name of the file has been “loaded,” whatever that
means.

General Program Structure

The contemporary microcomputer user may have no previous
experience with a program. Therefore, a significant fraction of the
programming effort must be dedicated to the creation of an intuitively

21

22

natural human interface. The program must, in the simplest way
possible, anticipate the user’s questions and needs and be prepared to
answer and fill them the moment they arise.

There are two important principles being followed in the most successful
human interfaces designs.

The external appearance of the program is as simple as possible. The
user does not get lost within a maze of branches. (You may safely
assume that the first-time user has not read the manual.)

The number ofscreens and menusis kept to a minimum. The ALF™
music editor and VisiCalc™ are excellent examples of this concept.

Displays are kept clean and simple. Questions posed are clear and free
of ambiguity.

Fluidity: Movement within the program is easy and fluid. The structureis
simple enough to allow the user to move from place to place without
becoming confused.

Tools: The user is provided with the necessary tools to work with the
program. For example, in a personal finance program, an input
requesting annual rentshould allow an answer suchas 435.00 * 12 or
435.00 X 12, and not expect the user to work out the answer in his or
her head. If a file name must be selected from the disk, those file names
are either displayed or available for display.

Everything the program expects the user to do is either familiar or feels
intuitively right. The user should feel comfortable within the program and
the program should be supportive, responding to the user’s best guess
of the right thing to do at any one moment. Everything in this document
really leads toward an intuitively correct program. But matters of intuition
cannot be thoroughly dissected: the ultimate testlies with whether a
new user can feel master of the program within a very short time, or
whether he will simply flounder around, trying to figure out what the
program wants and why.

Special Key Functions Are Consistent

If a user wishes to complete an input, she knows to always press the
RETURN key. ESCAPE always allows the user to escape back
whence she came.

Anticipation

The program anticipates as much as possible the needs
and questions of the userand s prepared to handle them as they arise.

Intelligence

The program does not ask for unnecessary data, data

which can be derived from information already at hand, or data already
asked for and received before.

Confirmation

The program tries to prevent catastrophic errors. If the user commands
thata 100K text file be deleted, the program should require cognizant
confirmation:

Are you sure you want to destroy 5 days’ work? Type DESTROY 5
DAYS WORK to confirm.

If the user commands that a new file be saved under a name already
being used for a 100K textfile, the program will announce that saving
the file under this name willresultin the destruction of the original file,
and then present a confirmation question similar to the one above if the
user says to save the file under the duplicate name anyway.

Tree Structures

The tree structure of a program is designed to feel natural to a user, not
the programmer. For example, one could design a program which will
both create and play music. Saving created music and loading that music
for later playing are highly similar programming tasks and can quite
possibly be done using the same basic subroutines. But while itis
structurally logical to share code between them, itis intuitively wrong to
dump the two options adjacent to each other on a menu. Saving should
be grouped with other music-creation options; loading with both creation
(for editing), and playing.

Novice/Expert Modes

The first time a user runs a program he has quite different needs from the
tenth time he usesit. In the beginning, he needs as much information
presented as possible so that he can use the program with a minimum of
learning. Later on, with a program used habitually, he wants speed and
simplicity. He wants only information pertinent to the specific task being
carried out, notalotofinstructions on how to delete an incorrect
response.

Most large programs now have some sort of utility/configuration section.
The configuration sections often enable the user to select date and time
formats, colorvs. black and white, and whether or not to have sound. In that

23

section, you can also enable the user to select a skill level. The rest of
the program can then use the resulting flag, when set to expert, to
simplify verbiage and perhaps enable more flexible branching within the
program—branching that would serve to get the novice into trouble but
gives the expert the added flexibility she needs.

The skill level selection could be more sophisticated, perhaps with more
thantwo levels, perhaps based on the type of user. For example, a
single tax planner program might better bridge the gap between
accountant and Apple owner if the accountant could select, “Expert at
taxes, Novice at Apple” and the Apple owner could select “Novice at
taxes, Expertat Apple”. (The possible combinations and permutations
are truly boggling.)

Ending

The user is given a way out of the program. Even if your program is on a
copy-protected disk and there really is no way out, give the user an End
optionandthentell him that he may now insert another disk and press
RETURN, or whatever. Users feel positively trapped by programs with
seemingly no end; they forget that the power switch solves all.

BASIC programs should also reset and clear Hires screens and revert
to normal text condition upon a normal exit in order to prevent
interference with other unrelated programs.

The programs should also reset other system parameters to customary
settings.

The balance of this document presents more concrete guidelines for
specific program areas.

Input

Two major languages native to the Apple Il and Apple /Il series
computers are BASIC and Pascal. Each has an input routine as part of
the language. These input routines are used in many programs, and your
customers have become familiar with them. However, they are not
particularly well suited to most professional applications. As a result, in
the past, each software engineer has created her own routine, usually a
variation of one or the other “standard” input routine. The direction of
this creative technology has been toward more sophisticated input
schemes which allow insertion and deletion of characters. This
proliferation of inputs, each withits attendant cursor and special keys,
has left the poor user rather bewildered.

24

Enter The Three Cursors: New Apple owners are being trained to
recognize and use three different inputs: BASIC's, Pascal’s, and the
new insert/delete input. They are being trained that they can tell what
input they are faced with by the kind of cursor presented.

BASIC uses the blinking box cursor which overlays a character. Pascal
uses the solid box cursor which overlays a character. The new input
uses a blinking underline cursor which lies between characters.

Of all the standards being presented, this is the mostimportant: The user
should be able to tell the rules of the input from the kind of cursor being
displayed. If everyone conforms to the use of the proper cursor for each
personality of input (defined further below), Apple users will be relieved
of amajor source of frustration. Itis really hard to concentrate on learning
to do ellipsoid analysis of pork belly futures when you can'’t figure out
what key to press to correct a typo.

If you need additional features, then keep the original cursor and enable
the original features: make your input scheme a superset of the original.
If you need to use an entirely different kind of input scheme, please
select a different cursor and train your users to recognize it as yet
another entity.

Computer Move left Move right Insert Delete Accept Cancel
Apple II's LEFT ARROW RIGHT ARROW * * RETURN CONTROL-X
Apple /lI’s LEFT ARROW RIGHT ARROW * * RETURN CONTROL-X

* A user can both insert and delete within a BASIC input line using ESCAPE - cursor keys. As a practical matter, however, few other than
experienced BASIC programmers can actually do so with any facility, as the screen ceases to reflect what the character-input buffer
is actually holding.

Computer Move left or right Insert Delete-from-end Accept Cancel
Apple II's LEFT ARROW RETURN CONTROL-X
Apple /lI’s LEFT ARROW RETURN CONTROL-X

25

e L

Apple Il Series

Keystroke Editing Operation

Necessary:

LEFT-ARROW moves cursor left within input line.

RIGHT-ARROW moves cursor right within input line.

CTRL-D deletes character to the left of the cursor - Apple Il & lI+.
DELETE deletes character to the left of the cursor - Apple lle.

RETURN accepts entire response, regardless of current cursor position.
CTRL-B has noeffecton adisplay with asingleinput. On a multiple- input

display (see next section), CTR L-B accepts entire response,
moving user back to previous input.

Useful if implementation language allows sufficient speed:

CTRL-X deletes all characters on the input line.
CTRL-Y deletes all chars from present cursor position to end of line.
CTRL-R recalls display of default response. If no default, then it acts the

same as CTRL-X.

Optional:

CTRL-P Prints the contents of the display on the default printer.

Notes

Because this inputis new to Apple Il and Apple II+ users, itis
particularly inportant that you expressly state on the display that cTRL-D
is used to delete characters. (Apple lle users have been trained how to
use this input on the APPLE PRESENTS...APPLE diskette, buta
reminder to use the DELETE key would be helpful.)

Typing any printing character will automatically insert that character
into the input line at the current cursor position.

Pressing RETURN with the cursor anywhere within the input line will
accept the entire input.

Default responses are displayed with the cursor at the end of the
response.

RETURN will accept that response.

LEFT-ARROW will move cursor back into the default response, enabling the
user to edit it.

RIGHT-ARROW will signal that you wish to append material to the response.

CTRL-D (Apple Il & II+) will delete asingle character from the end of a

response and signal that you wish to edit the response.

DELETE

(Apple lle) will delete a single character from the end of the

response and signal that you wish to edit the response.

Pressing any other key will clear the default response and begin a new
response in its place.

Apple lll Series

Keystroke Editing Operation

Necessary:

LEFT-ARROW moves cursor left within input line.

RIGHT-ARROW

Either:

CTRL-SPACE,
CTRL-LEFT-
ARROW,Or DELETE

Either:

CTRL-RIGHT-
ARROW or
CTRL-DELETE

RETURN
CTRL-B

CTRL-RETURN

CTRL-E
CTRL-K
CTRL-U

Optional:
CTRL-P

Notes

moves cursor right within input line.

will delete the character to the left of the cursor.

will delete the character to the right of the cursor.
accepts entire response, regardless of currentcursor position.

has no effect on adisplay withasingleinput. On a multiple-input
display (see next section), CTRL-RETURN accepts entire
response, moving user back to previous input. Programs often
use

in addition to C TR L-B for acceptand move back: CTRL-
RETURN isindistinguishable from CTRL-M, or CTRL -
whatever-character-your-user-has-defined-to-be-in-M’s-
standard-keyboard-position. Pleasetake this potential risk into
account before enabling CTRL-RETURN as wellas CTRL-B.

deletes (erases) all characters on the input line.
deletes all chars from present cursor position to end of line.

(Un-do) recalls display of default response. If no default, then it
acts the same as CTRL-E.

Prints the contents of the display on the default printer.

Typing any printing character will automatically insert that character into
the input line at the current cursor position.

Pressing RETURN with the cursor anywhere within the input line will
accept the entire input.

28

Default responses are displayed with the cursor at the end of the
response.

RETURN will accept that response.

LEFT-ARROW willmove cursor back into the default response, enabling the
user to edit it.

RIGHT-ARROW will signal that you wish to append material to the response.

CTRL-SPACE

OrDELETE willdelete asingle character from the end of aresponse and

signal that you wish to edit the response.

Using the New Input on an Apple Il or Apple Ill Series Computer

The program input statement asks the user for information by displaying
averbal prompt. Prompts should terminate in a colon (:) or greater-than
sign () if a statement, a question-mark (?) if a question. The promptis
followed by 2 spaces on an 80-column display, 1 space on a 40-column
display.

A default answer may be displayed, with the cursor following, in which
no fieldlengthis denoted. If thereis no default response offered, or the
default is rejected by the user, the program can display a finite input field
with aseries of periods (standard character set) or “ghost” underlines
(hi-res character set). The latter character is essentially a shortened
underline with every other dot turned off.

The specification of the number of spaces between the prompt and the
input field is quite important: users canbecome confused as to where
their answer begins. If all programs adhere to one space with 40 column
displays, 2 spaces with 80 column displays, the users willknow whether
they have inadvertently typed a leading space or not. (As a separate
issue, leading and trailing spaces should be routinely stripped off, unless
they are specifically needed.)

Keystroke errors are best trapped immediately: if you are accepting a
decimal number, do not accept a letter such as “A” or “B”.

Here is the example of the input whichis taught on APPLE
PRESENTS...APPLE for the Apple lle:

What is a “drift"?

Y Awhole lot of cattle—

(Consider the underline to be blinking — the printer was not able to quite
capture the effect.) The problem presented is to change the answer to
read:

Y Aherdofcattle

To edit the response, the user first moves back to the end of the word
“lot,” using the LEFT ARROW. It looks like this:

Y Awhole lotofcattl—e
Y Awhole lotofcatt—_le
> Awhole lotofcat_tle
Y Awhole lotofca—ttle
Y Awhole lotofc—_attle
> Awhole lotof —cattle
Y Awhole lotof_cattle
YAwhole loto_fcattle
Y Awhole lot —ofcattle
Y Awhole lot—ofcattle

The user is nextinstructed to press the DE LETE key several times, until
the words “whole lot” have been deleted:

YA _ofcattle

Next, the user types the word “herd”:
Y»Ah_ofcattle
YAhe_ofcattle
YAher_ofcattle

> Aherd_ofcattle

Finally, the user can press RETURN to accept the entire response:

> Aherdofcattle

Cursor Movement with no Action Taken

Sometimes programs such as word processors require pure cursor
movement with no action taken. The standard keysin such casesare as

follows:
Keys for up, down, left, and right motion:
Apple Il and Apple Il Plus:
I=up

J=left K=right
M=down

These keys are often prefixed with an ESCAPE.

Apple lle: the four arrow keys
Apple /ll: the four arrow keys

Keysforvertical, horizontal, and diagonal
motion:

Apple I, Apple Il Plus, and Apple lle:
U=up,left I=up O=up,right

J=left K=right
N=down,left M=down ,=down,right

These keys are often prefixed with an ESCAPE.

Apple Il

Full cursor movement on the Apple lllis
done using the numeric keypad:

7 =up,left 8=up 9=up,right
4=left 6=right
1=down,left 2=down 3=down,right

In the olden days of computers, one typed a command to a computer
onto a punched card. One then walked down the hall to the computer
room, left said card, and returned some hours later to find that the
command was syntactically incorrect. Later, time-sharing changed all
that. Now one could type in the command, then press a single key called

RETURN which would send the command down the hall. Soon (15
seconds or so later) the computer would announce the command was
syntactically incorrect.

Many microcomputer programs still wait around until the user has made
a thorough fool of himself and pressed RETURN before sending the
results “down the hall’’ to the program unit which does keyword
matching. This unnecessary waste of processing time and power is
inherent in the built-in input routines of the languages which have been
ported over to micros from time-share systems. Since we are generally
supplanting those old routines with the new blinking-underline routine,
which is accessible and can be taken apart, this waste neednotgo on.

Keyword matching is used in programs which are command-driven and
programs with lists, such as file names, from which a user must select
by typing in the name of the selection. Often, the human interface is
rather sparse:

Command Word? _...........
File Name? —...............
Enter command and command-object: —............

or, even more simply, (for the programmer)

Command-driven programs offer a speed and flexibility not generally
attainable in amenu-driven program. They also typically offeramuch
steeper learning curve—so debilitating a learning curve that
salespeople will often avoid selling a command-driven program
because of the time and practice required for them to give even a
rudimentary demonstration. Result? Lost sales.

In order to type acommand or list selection without prompting, the user
mustlearn whatwords he cantype atany one pointin the program. This
learning problem can be overcome in a straightforward manner by
displaying a list of all options then available. Typically, this can be done
by creating a display similar to the standard menu format, with the center
region devoted to the list of words.

3

Commodity Analyzer Belly Processes Pork Bellies

Commands Inventory Types:
display complete bellies
graph partial bellies
compute dancing bellies
buy

sell

eat

delete

Type your instruction and press RETURN: _

Options: ESCAPE to leave OPEN-APPLE-? for help

As the available options change, so do the options displayed. Thus, the
user knows at every point exactly whatshe canselect. (The display of
command words could be made optional through the novice/expert flag;
variable lists of words, such as file names, should always be visible.)

A second, more subtle learning problem must b e handled a different
way: Typically, acommandword system will allow abreviations: why
make the user type in ““display dancing bellies” when “did” is all that is
required to make the user’sintentions clear? (Display and Delete both
startwith d. Once the iis added, display is the only possible answer. The
only command-object that currently starts witha dis “dancing bellies.”
Thus, the user’s meaning is not ambiguous.

Usually the user haseitherhadtolook up abbreviations of command
wordsin the manual, or discover them by trial and error. Words from lists
such as current file names have simply had to be typed out completely,
with no abbreviations accepted. The Disambiguator changes all that.

The algorithm for figuring out at what point the user has typed enough so
that ananswer is unique (not ambiguous) is really quite simple: on each
keystroke, the list of possible words is scanned for a match-up of as
many letters have been typed so far. As soon as only one match can be
found, the word has been found and can be completed by the program.
In the above example, the sequence would look like this:

Type your instruction and press RETURN.
D—

No unique match s found (both delete and display match) so the input
only echos the user’s character.

Type your instruction and press RETURN.
DI_splay

User’s response is no longer ambiguous: the program supplies the
remaining characters in the opposite case from that the user is typing.
(An alternate character set can be used when the environment permits,
so that the user can type both uppercase and lowercase characters.)

Type your instruction and press RETURN.
DIS_play

The user has not noticed that the computer has made a match, which
happens often with a touch-typist. Thereis no penalty: the new
character is echoed and the program now supplies just that portion of
the command word still remaining.

Type your instruction and press RETURN.
DISPLAY —

The user has noticed that the answer has been found and has pressed
the terminating character, in this case a space. The program completes
the word, using the case that the user has been typing and adds the
space to the end.

Type your instruction and press RETURN.
DISPLAY D—ancingbellies

As soon as the “D” in “dancing bellies” has been typed, the remainder of
the phrase becomes clear.

Type your instruction and press RETURN.
DISPLAY DANCING BELLIES

The user terminates the input with RETURN and the fullanswer is
echoed and acted upon.

The Disambiguator input has been used in anumber of programs over
thelasttwo years: ithas proven to be quite successful. It lets people
getusedto abbreviations at their own speed, without their having to
look up anything or get yelled at by the computer for using the wrong
abbreviation, yet it accomplishes this with no penalty to the touch-
typist who isjustashappy pounding out the entire word. As a fringe
benefit, it speeds up the program’s response time: when the user
presses RETURN, the program already knows what the instruction is
and that it is legal.

33

Pascal programs handling lists of up to thirty words in any one context
have been implemented with this routine in Pascal. Pascal programs
with very long lists or any BASIC programs need the routine to be
implemented in native code.

The Disambiguator algorithm is justan example of the kind of
processing that can go on actively during the user’s inputtomake the
user’slife alittle easier. Thereis no longer any technical reason for
programs to stand by while users flounder, waiting to pounce on them
when they press RETURN.

The user can control the movement from one display to the next by
pressing the RETURN key (or, optionally but consistently, sPACE bar).
He is informed by a message such as, “Press the RETURN key to go on
tothe menu.” onthe bottom line of the screen. (Delay loopsare difficult
tojudge astothe proper duration, and become somewhat insulting to
the intelligence of the user.) The actual prompt message should give
some indication asto what willhappen next, rather than simply saying
“Press RETURN to continue.”

The educational software community has pretty much selected

SPACE barinstead of RETURN to control movement: children were
found to occasionally press RESET by accident on the older Apple II's
and Apple Il Plusses. Please be consistentin your choice of RETURN or
SPACE bar, not only within a given program, butacross your complete
product line.

Donottelltheuserto “‘pressany key.” Onthe Apple Il series
computers, you cannotread every key by itself: RESET, SHIFT,
CONTROL. We have also foundin testing that new users, in particular,
panic when asked to press any key. Over 80% of them will turn around
and say, “‘but what key should | press?” In questioning themaboutthis
response, we discovered thattheyare quite convinced that even
though the prompt implied allkeys were OK to press, some could be
dangerous. Of course, they were quite right.

While you should nottellthemto press any key, youmay, in this
specific case only, acceptmore than the key specified. BothRETURN
and SPACE bar should be accepted, even though only one is prompted
for: users grow used to using one or the other. You may optionally (and
only in this specific case of using the key as a switch) want to accept
most keys, so thata user striking out for SPACE bar and pressing V by
accident will not be penalized. Do notaccept ESCAPE instead of
RETURN Or SPACE bar.

Displays with several input statements:

e Movement from input to input is sequential: the user may move back
and forth but not randomly skip around.

e Pressing the RETURN key automatically positions the user at the
next input statement.

®* Pressing c TRL-B automatically positions the user at the previous
input statement. The prior response to the previous input will be
displayed as that input’'s default.

e The last input on the display will normally ask if the user has
completed all responses to her satisfaction.

¢ No input will be accepted without the user explicitly terminating it,
usually with RETURN or CTRL-B. The fact that the user has used up
allthe spaces available in the field should not automatically move
the user to the next question.

Error Trapping

In most situations, user inputs must be checked for validity. Account
numbers, employee numbers, and dates are just afew examples of
items that should be checked to see if the data requested is on file or
plausible. Numeric inputs should be screened for values too small or too
large, if extreme values are invalid or potentially damaging to the
program. An error message line should be provided in a consistent
location toward the bottom of the display.

Many types of errors can be circumvented through software design: If,
in testing, you find users repeatedly making the same kind of errors,
change the software.

Make your program insensitive to upper/lower case when no distinction

is necessary. Be particularly aware on Apple Il programs: the new
Apple lle can generate lower-case characters. (Make sure you only

35

transform characters: many of those obscure punctuation marks are
often-used special characters on foreign keyboards.)

Spaces should never be significant. Users look upon a space as a lack of
a character, not as a character. Strip leading and trailing spaces, and
intervening spaces too, when practical. For example, when prompting
the user for the name of an existing file, should the user respond “door
bell”’, firstlook for a literal match, then strip spaces, so thatyou can
match with the user’s original, but now forgotten, “doorbell”.

Likewise, donotreferto “the RETURN character”, unlessyouare
prepared to deliver an essay. Users steadfastly cling to their belief that
RETURN is an action, not a character.

Donotmake commands position-dependent. For example, donotset
up a stream of “parameters” such that if theuser wishestochangethe
fourth parameter, she must type three commas to signify acceptance
of the firstthree “default” parameters. If the meaning of the above
sentence is not immediately clear, you have gotten the point.

When a menu offers a set of choices, or the user is otherwise
promptedtorespondto arestricted set of options, then the program
should recognize only theresponsesthatare valid. Do not offer the
user amenu of options, most of which cannotbe used. If the user
needstoselecta file before deciding to Edit, Save, or Delete, let him
know. Don’t make him go down through a list, gettingthe same
unenlightening message, “Option not currently valid.”

Enable only those keys you have informed the user you are enabling.
Do not prompt: “Press ESCAPE to end, RETURN to continue...” and fail
to announce that sp A CE bar will eliminate this afternoon’s files. The
classic negative example of thisis an early Apple text editor with a
verified replace option. According to the manual (no instructions were
displayed), Rmeantreplace this occurrence, sPACE bar signified do
notreplace this occurrence. The actual code was such thatany
character with an ASCIl value of 82 (R) or above causeda
replacement, and any character with an ASClII value less than 82
caused a skip. Therefore, “[” would replace, “8” would not, “A” would

[TaR1}

replace, “,” would not. Confusion yet reigns over that one.

Having presentedtherule, here is the exception: whenusingSPACE
baror RETURN as aswitch (“Press RETURN to continue”) you may want
toacceptallreasonable keys surrounding the intended target, so as to
not penalize the user for poor aim.

Error Messages

Error messages should alert the user, identify the problem, and direct
the user toward solutions. They should do so with a minimum of
disruption: ring the bell once—the whole room doesn’t need to know the
user has yet again made a fool of himself.

Remove the error message as soon as the user takes proper action
to correct the condition. Users will believe you: as long as the
message is there, they will continue to correct the problem. It has
been shown that attempting to correct a problem that has already
been corrected will usually result in a brand new problem.

There are two classes of error messages that either intimidate or
infuriate users.

First, the computer-gibberish special:
Application error #1463

Error messages should not only provide information (in the user’s native
tongue, not computerese) as to what the error was, but should offer
solutions asto what the user can do to correct the situation. A better
message might be:

You have notyet selected the name of the file you wantto work
from. Please type the name of one of the above files.

Second, the it's-easier-to-flag-an-error-than-correct-it error:
Data entry error: no comma after Aardvark

Users soon catch on that if the computer/language/program (everything
gets blamed) knows for a fact that there shouldbe a comma after
Aardvark, that the computer/language/program should supply said
comma. Therefore, the computer/language/programis either really
stupid or is lying.

Your application should have a designated area of the screen where
errormessages are displayed. The usuallocation has come to be lines
23 and 24 of the display, but whether you choose these lines or not,
make the location consistent. Long help instructions may require a
different “page”. Preserve the contents of display as much as possible
while providing help, and once help is terminated, restore the context
completely.

Please do notever use the word default in a program designed for
humans. Default is something the mortgage went into right before the
evilbankerstole the Widow Parson’s house. There is an exhaustive list
of substitutes (previous, automatic, standard, etc.) in the Appendix to
How to Write a Manual.

Defaults should be declared, not assumed. Undeclared (not displayed)
defaults such as pressing RETURN for Yes (or for No?) will cause
confusion and anger.

You need notdeclare ESCAPE every time you enableit: ESCAPE always
gets you out of where you are, to where you came from, without
causing damage or confusion. As long as you adhere to that benign
definition, youmay feelfreeto slip in ESCAPE anywhere.

Displays

Inverse. There are many recent model home color TVs and older black
and white TV’s that display inverse mode very poorly. Inverse mode can
be used effectively to accent screen material, particularly on the limited
40 column screen of the Apple Il and Il Plus. It should be used creatively
in business software where itis expected the user willhave a quality
monitor. However, for software aimed for the home market, avoid
inverse mode unless the entire screen or several adjacent lines are
simultaneously inversed.

Flashing mode should only be used to indicate imminent destruction of
data or the program.

Focus. TV sets in particular, as well as many lower-priced monitors,

have very poor focus in the extreme corners. Use the corners for familiar
character groupings (such as words), rather than clusters of unrelated
characters (such as numbers). The human mind can figure out that what
looks like “8ASIC FUNCTIONS” is probably “BASIC FUNCTIONS”, but
will have less luck discerning that what looks like “1500.00” is really
“7500.00”, anerror that could have far-reaching effects. Keep input
lines away from the corners for the samereason: the user needs to be
able to check each individual character typed.

Jargon

Avoid computer jargon. A great deal of it has an unrelated emotional
charge. (Abort, for example.) The appendix to How to Write a Manual
has a comprehensive list of standard terms.

Keycap Names

Whenever possible, callkeys by the names printed on them, written out
in full. Three of the keys do have a standard abbreviation:

First choice Second choice Abbreviation (last choice)
OPEN-APPLE OA

(&) SOLID-APPLE SA

CONTROL CTRL

The Apple Il and Apple Il Plushave cTRL printed onthe CONTROL key
and should therefore be prompted by “cTR L” as afirst choice.
(However, the Apple lle has CONTROL spelled out on the CONTROL
key.) Foreign-language keyboards have various special symbols for
shift, capslock, tab and return; use the “local” character in each
“local’” version where possible.

Abbreviations

Use abbreviations only where absolutely necessary orwherean
abbreviation is better understood than what it stands for, e.g., 8 PM.

Programs should begin with a clear announcement of the title of the
program, authorship credits, and a copyright notice (if any).

The user should not be faced with page after page of instructions:
experience has proven that people simply will not read them. Rather,
supply help as it is needed. One way of doing that is described in the
section on menus.

When you try your program out on new users, be sensitive to the times
they need fundamental help in using the features of the programs. For
example, while you may have a program portion with detailed
explanations on why ellipsoid analysis is so effective in figuring hog belly
futures, your user may never get there: youmay nothave provided
necessary help in how to enter preliminary data.

The standard help key on the Apple lle and Apple /il series computersis
either OPEN-APPLE-?0r SOLID-APPLE-?(The SHIFT should notbe

required: therefore, also accept OPEN-APPLE-/and SOLID-
APPLE-/.)

The standard help key on the Apple Il and Apple Il Plus, where
practical, is a question mark or slash, or else ESCAPE ?or ESCAPE /.

The normallocation for help messages is the bottom of the screen.
Whether you use this location or another, make your location
consistent. When using a separate help screen, clearly titleitas a
“help” display, and make the transitions as smooth as possible. When
help has been given, restore the screen to its original condition.

Many of the menu guidelines may appear somewhat arbitrary—they are.
It appears only happy coincidence that so many developers are making
menus so similar. As with many aspects of human interface standards,
what is important is that one standard be set so the poor user can get
usedto one way of doing things. Itis not nearly so important what that
standard is.

A menu should display all choices legibly, using numbers for menu
selection. Research hasshown that people will learn a number on an
oftenused menu as quickly as aletter, even though letters on the
surface appear more friendly. (“Was that E for Edit or E for Erase?”)
Mnemonic letter schemes are a nightmare to translate, and well over half
of computer users are not touch-typists. For these reasons and others,
the vast majority of developers have settled on numbers.

If youdo settle onletters, for your ownreasons, be suretobe
consistent: don’t make the user use numbers forone sectionofa
program and letters for another.

All sub-menus should allow the userto move to the next higher menu by
pressing the ESCAPE key. The main menu should nothavean ESCAPE
key option, so that the user can feel confident about leaning on the
ESCAPEkeytogetall the waybacktothetoplevel, without worrying
about being bounced completely out of the program upon reaching the
top level. Eachmenu should (redundantly) have a last optionthat will
move the user back to the next highest level. The Main Menu’s option
should end the program.

The following is an example of a menu using the standard menu format:

Commodity Analyzer Futures Menu Select Future

1. Pork Belly Futures

. Corn Futures

2

3. Present Futures

4. Crystal Ball Futures
5

. Return to the Main Menu

Type your Selection (1-5) and press RETURN: _..

Options: ESCAPE toleave OPEN-APPLE-? for help

The exact number of lines devoted to the three regions is not gravenin
stone: thereal standard being striven for is that there be three regions
with solid lines separating them, that these be devoted to titles, choices
presented, and instructions. (The Apple Iland Apple Il Plus can not
produce a solid line in text mode; usez either their hyphens or their short-
underline characters.

The title region can have up to three titles (usually two in forty-column
mode). The middle title (or left title, if only 2) should be the name of the
menu, and it should contain the word, “menu.” Other displays you will
use, suchasdata entry and information, may have a similar format: make
sure your user is clearly aware of what he is being asked to do. Similarly,
on information screens, do not number itemized lists, asterisk them:
otherwise, about 25% of your users will try to type in a “selection’.

You may use or not use the other titles as you see fit, but they should
have a consistent meaning throughout a given application.

Note that a field length longer than one has been allowed for the number
input. A field length of only one character will not give the user enough
feedback astohow the input works. Users who have typed the wrong
number will often panic, assuming the computer has somehow locked
up. By giving them a few extra spaces, they can see from the action on
the screen what is going on and deduce what to do about it. Since you
will be stripping leading and trailing spaces (won't you?), this extra
freedom afforded the user will not affect the program.

The instruction region doubles as the error message region.

One method you can use to enable the user to get descriptions of any
optionis to have them type the number of the option, followed by the
helpkey (0PEN-APPLE-?0nthe Apple lle and Apple /ll, ? on the
Apple lland Il Plus). The user is able to get extensive information only
on those items of interest, without having to wade through masses of
information that are not needed.

Routines for doing these menus will be available from Apple: firstin
Pascal forthe Apple /Il inthe Screen Managerandin BASIC forthe
Apple Il series within the sample programs (Magic Menu, Disk Menu,
etc.) supplied with the Apple lle Applesoft Tutorialand Reference
manuals package. The BASIC version is implemented with the help
facility described above.

(The following is arepeat of an earlier section. The keyword display is
repeated here to make the document useful for reference.)

In order to type a command or list selection without prompting, the user
must learn what words he cantype atany one pointin the program. This
learning problem can be overcome in a quite straightforward manner by
displaying a list of all options then available. Typically, this can be done
by creating a display similar to the standard menu format, with the center
region devoted to the list of words:

Commodity Analyzer Belly Processes Pork Bellies
Commands: Inventory Types:

display complete bellies

graph partial bellies

compute dancing bellies

buy

sell

eat

delete

Type your instruction and press RETURN: _

Options: ESCAPE to leave OPEN-APPLE-? for help

As the available options change, so do the options displayed. Thus, the
user knows at every point exactly what she can select. (The display of
command words could be made optional through the novice/expertflag;
variable lists of words, such as file names, should always be visible.)

When the computer will be either carrying out computations or
accessing thediskforan extended period of time, a message should be
left on the screen, instructing the user thatthe computer willreturn
shortly (this is not the suggested message). Some periodic change in
the screen, as alengthening line of periods (hence periodic) shouid
occur so the user knows the computer has not simply gone into an
endless loop somewhere. When the computation period is over, clearly

signal it: simply showing up with a blinking cursor over in the corner
won'’t do after a brief, 20-minute pause.

a

=

iqpple computer

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576

©1982 Apple Computer Inc. A2F2116 11/82 030-0621A

	Apple //e Design Guidelines

	Contents

	About This Guide

	Part I: Product Design Guidelines

	Part II: User Interface Guidelines

