
.,

Design Guidelines

Contents

About This

Design 1

1 I ntroduction
1 Software
1 New RESET Features
1 New Apple 80- Column Text Cards
2 Hand Controls and the APPLE Keys
2 New Apple l i e Fi rmware
3 Peripheral Card Firmware
4 BASIC Protocol
4 Pascal 1.0 Protocol
4 Pascal 1 .1 Protocol
7 Hardware

9

9 I ntroduction
10 Good Human Interfaces: So Often Elusive
10 A Plann ing and Test ing Methodology
10 Plann ing : the User Prof i le
14 Testing
19 Goals
19 Simpl ic ity
19 Consistency
20 Eff iciency
20 Self-teaching
20 Speediness
21 Min imum Strain on the User's Memory
21 Honesty

21 G eneral Program Structure
22 Keep It Simple
22 Make It Fami l iar And Intu itive
24 I nput
25 The (Apple I I BASIC) Bl ink ing-box Cursor
25 The (Pascal) Sol id -box Cursor
26 The New Insert/Delete Cursor
30
30
34
35
35
37
38
38
38
39
39
40
42
43

Cursor Movement with No Action Taken
Keyword Matching Dur ing I nput: the Disamb iguator
" Press RETU RN to continue"
Displays with Several Input Statements
Errors
Defau lts

Displays
I nverse , Flash , Focus
Vocab ulary
Title Pages
Help
Menus
Keyword Displays
Keep Them Informed When You Are Away

iii

About This Guide

This gu ide is divided into two parts . Part I contains recommendations to
software, f i rmware and hardware designers who want their products to
work smoothly with the Apple l i e, as wel l as the Apple I I and I I P lus .
These recommendations pertain to the i nterface between Apple I I
Series computers and the products that are to work with the m .

Part I I pertains to the interface between software products a n d their
human users . The recommendations in this section of the guide apply to
designers of software for Apple 1//s as wel l as Apple l i s . The user
interface gu idel ines derive from the exper ience of countless Apple I I and
Ill users, as observed by more than a dozen computer and teach ing
professionals . These gu idel ines shou ld make it easier for both
programmers and users to create and benefit from the tools that Apple
computers put at their disposal .

v

Part I
Product Design Guidelines

Introduction
This section contains gu ide l ines for designers of software , per ipheral
card f irmware , and hardware intended for use with the Apple l i e . Also
refer to the sections of the Apple l ie Reference Manual (Apple Product
Number A2 L2005) pert inent to t he product you are design ing .

Software

Most of the software gu idel ines pertain to four new features of the
Apple l i e :

1 . The new R E s E T features and the i r imp l ications .

2 . The Apple l i e 80-column text cards and the need to check for the
presence of such a card and turn it on and off at appropriate t imes .

3 . The o P E N - A P P L E and s o L 1 o - A P P L E keys and the fact that they
are e lectrical ly connected to the push bu ttons of hand controls # 0
and # 1 , respectively .

4. The new f i rmware , inc lud ing enhanced Mon itor program functions ,
expanded keyboard ROM map with lowercase characters , and
twofold video display ROM map for pr imary and alternate character
set display .

The Apple l i e has al l 64K of its memory in RAM . A reset now affects the
cont ents of what used to b e the " language card" area of main memory.

1 . Do not requ i re the use of the R E s E T key dur ing program operation
un less you are not concerned that the ban k-switched RAM (former
language card addresses) wi l l b e switched out .

2 . Have BASIC or assembly language programs start u p us ing the
o P E N - A P P L E c o N T R o L - R E s E T sequence rather than P R#s (s lot s
for the startup d isk dr ive) . This recommendation is re lated to the
requ i rements of the new Apple 80 -column text cards .

New Apple 80-Cn/urrsn TJ:Jxf Cards

These gu idel ines apply to BASIC and assem b ly language programs and
their cal ls to Monitor service routines .

1 . Have any greeting program 's fi rst action b e to determ ine if an
80 -column text card is in the system (see Per ipheral Card Firmware
section below for identif ication methods) .

1

2

2 . Make sure that an 80 -column card i s i nstal led before attem pting to
turn it on ; otherwise , unpredicta ble system condit ions may result .

3 . To turn on the Apple l i e 80 -column f irmware , use P R #3 o r the
equ ivalent . The Apple 80 -column f i rmware is associated with s lot
3 for compatib i l i ty wi th the Apple Pascal Operating Syste m .

4. Do not use P R #O to turn off the 80 -column f i rmware . To turn it off ,
issue a C O N T R O L - U (N A K character ; dec imal code 2 1) .

5 . Never have a program issue a P R #O o r I N #O whi le the 80 -colu m n
f i rmware is active .

6 . Before sending output to devices other than the video display , issue
a c o N T R o L - L (Form Feed character , dec imal code 1 2) to c lear
the scree n , then a c o N T R o L - u to turn off the 80 -colum n f i rmware .

7. If the 80 -column f irmware is active , look at location 49 1 52 ($ COOO)
d i rectly to check for a keypress . If you use the BASIC G ET
command or the Monitor KEV I N routine , each E s c keypress wi l l be
executed before its mod ifying escape code can be retr ieved .

8 . I f the 80-column fi rmware is active, a program should not attempt to
display flashing lowercase characters ; they are not avai lable in the
alternate character set.

9 . I f your software turns o n the 80-column f irmware , b e sure i t turns it
off before ending.

The Pascal Operating System automatically checks for the presence of
an 80 -column text card in slot 3 or the AUX CON N ECTOR slot. and turns
on the 80-column fi rmware if such a card is present .

'"land Contro/t; and the APPLE Keys

The new o P E N - A P P L E key is connected to the pushbutton of hand
control #0 , and the new s o L I D - A P P L E key is connected to the
pushbutton of hand control #1. Therefore , do not have a program
check for the absence of hand controls by check ing whether both
pushbuttons have been pressed . Instead , have the program wait for a
count of 5 1 2 (twice the normal count) and see if the hand control t imer
has t imed out . I f not , no hand controls are connected .

Nevu Ap,le fie Firmware

The Apple l i e Mon itor has been careful ly rewritten to maintain al l the
same entry points as those publ ished in the or ig inal Apple I I Reference
Manual . (The same entry points are , of course , a lso l isted in the
Apple l ie Reference Manual .) At the same time , the Mon itor screen-

handl ing routines have been changed to accomodate the requ irements
of 80 -column display.

The keyboard ROM map now features lowercase characters as wel l as
several characters not d i rectly avai lable on the Apple I I and I I P lus
keyboard .

To adapt software to these new features , fol low these gu ide l ines:

1 . Either avoid performing checksums o n the resident f i rmware or be
prepared to accept the checksum outcome of each model of
Apple I I that the software wi l l run on .

2 . Make sure that the program i s designed to recognize lowercase
characters or to convert them to uppercase as necessary .

3 . Make sure the program reacts appropriately to the alternate s ing le­
quote character (decimal code 96) now on the keyboard , as wel l as
the more commonly used s ing le quote character (decimal code 39)
that has always been present on Apple I I keyboards .

4 . Programs that compensated for the absence of certain characters
(for example , " or I) do not need to do so for the Apple l i e .

5 . If a program uses Mon itor input/output routines , it should not use the
80 -column software switch at location 49 1 65 ($COO D) .

6 . BASIC programs that use 80-column f irmware should POKE
location 3 6 with tab locations rather than attempt ing to do "comma
tabbing . "

7. Any program that uses 80-column f irmware cannot also display
flashing characters . F lash ing characters are not avai lable in the
alternate character set, which is the set the 80 -column f i rmware
uses .

Peripheral Card Firmware

Any per ipheral card that is to work on the Apple l i e should have f i rmware
that takes into account the protocols of BASIC , Pascal 1 .0 , and Pascal
1 . 1 . Pascal 1 . 1 protocols were purposely made f lexible enough to meet
the requirements of future versions of Pascal , extend ing the usefu l l i fe of
per ipheral card fi rmware .

These protocols are not un ique to the Apple l i e , but rather are publ ished
here to make it easier for per ipheral f irmware designers to f ind a l l
requ i rements in one place .

3

4

BASIC Protocol

The BASIC protocol is very s imple ; it requ i res that three entry points be
found at fixed locations for a card in s lot s :

Address Contains

$ C s00 initialization routine entry point

$ C s05 input routine entry point

$ C s07 output routine entry point

Pascal 1.0 Protocol

There are also three entry points for f irmware cards under the Pascal
1 . 0 protocol:

Address Contains

$ C 800 initialization routine entry point

$ C 84 D read routine entry point

$ C 9A A write routine entry point

New peripheral cards can be "accepted" into the Pascal 1 .0 system by
using these entry points, as wel l as having the values $3 8 at location

$ c 5o s and $1 8 at $ c 5 0 7 (see Device I D d iscussion below) .

Pascal 1 1 Protocol

Pascal 1 . 1 has a more f lexible setup and supports more i nput/output
functions than BASIC or Pascal 1 .0. I t makes ind i rect cal ls to the
f irmware in a (new) peripheral card through addresses i n a branch table
i n the card 's f i rmware . It also has faci l it ies for un iquely identify ing new
per ipheral I /O devices .

The 1/0 routine entry point branch table is located near the beg inn ing of
the $ c 50 o address space (s be ing the slot number where the peripheral
card is instal led) . This space was chosen i nstead of the $ c 8 o o spac e ,
s ince u n d e r BASIC protocol the$ c 5o o space is requ i red , w h i l e the

$ c 8 o o space is optional.

The branch table locations that Pascal 1 . 1 uses are:

Address Contains

$ C s0 D initialization routine offset (required)

$ C s0 E read routine offset (required)

C sO F write routine offset (required)

$ c s 1 0 status routine offset (required)

$ C s1 1 $0 0 if optional offsets follow; non-zero if not

$ C s1 2 control routine offset (optional)

$ C s1 3 interrupt handling routine offset (optional)

Notice that $ c s 11 contains $ o o only if the control and i nterrupt
hand l ing routines are supported by the f i rmware. Apple I I Pascal 1 . 0
and 1 . 1 do not support control and in terrupt requests, but such
requests may be imp lemented i n future versions of the Pascal B IOS
and other future Apple I I operating systems .

Here are the entry point addresses, and the contents o f the 6502
registers on entry to and on exit from Pascal 1 . 1 1 /0 rout ines:

Addr. Offset for X Register Y Register A Register

$ C s0 D Initialization
On entry .$ c s $sO

On exit error code (unchanged) (unchanged)

$ C s0 E Read
On entry $ C s $sO

On exit error code (unchanged) character read

$ C s0 F Write
On entry $ C s $sO char. to write
On exit error code (unchanged) (unchanged)

Status $ c s 1 0

On entry $ C s $ sO request (0 or 1)

On exit error code (changed) (unchanged)

Notes: Request code 0 means, "Are you ready to accept output?" Request

code 1 means, "Do you have input ready?" On exit, the reply to the status
request is in the carry bit: carry clear means "No"; carry set means "Yes."

5

6

Pascal 1 . 1 uses four f i rmware bytes to identify the per ipheral card. Both
the identifying bytes and the branch table are near the beg inn ing of the
$ c s o o ROM space . The ident if iers are l isted in the fol lowing tab le .

Address

$ C s05

$ C s07

$ C s0B

$ C s0 C

Value

$3 8 (standard BASIC requirement)

$1 8 (standard BASIC requirement)

$01 (generic signature of firmware cards)

$ c i (device signature; see below)

The fi rst digit, c, of the device signature byte identif ies the device class.

Digit Class

$0 reserved

$1 printer

$2 joystick or other X-Y input device

$3 serial or parallel 1/0 card

$4 modem

$5 sound or speech device

$6 clock

$7 mass storage device

$8 80-column card

$9 network or bus interface

$A special purpose (none of the above)

$B-F reserved for future expansion

The second dig it, i, of the device signature byte is a un ique identif ier for
the card, assigned by Apple Techn ical Support. For example, the
Apple l ie 80 -Column Text Card has a device signature of $8 8.

Although version 1 . 1 of Pascal ignores the device s ignature,
appl ications programs can use them to identify specif ic devices .

Hardware
The Apple l i e Reference Manual specif ies the overall physical and
electrical characteristics of per ipheral cards d is igned for use with the
Apple l ie computer . In addit ion to these requirements, some detai led
gu idel ines apply:

1 . To maintain a consistent instal lation procedure as wel l as avoid
interference with adjacent cards, always design cards so their
component s ides face away from the power supply case .

2. Avoid designs that requ i re connection to ch ip sockets on the main
circuit board, as future revisions to the board may make such cards
obsolete .

3 . Do not require that a card be instal led i n slot 3 if its intended
appl ication can involve a text or v ideo card in the AUX CONN ECTOR
slot.

4. Cards should not dissipate more than the amount of power specif ied
in Chapter 7 of the Apple l ie Reference Manual .

5 . Cables should use 9-p in or 25 -pin " DB" style connectors . The four
1 9-p in openings (1 through 4) on the back panel are reserved for
use with disk drives.

6. Internal cables should preferably connect to the keyboard end of
the card. This g ives the user more freedom in selecting a slot to
install the card . It also al leviates strain and bending on the cable .

7 . Cards that have fi rmware on them should be identif iable accord ing
to the protocols outl ined in the F i rmware section preceding th is .

7

Part II
User Interface Guidelines

Introduction
The fol lowing gu idel ines and comments have been written for a diverse
audience .

As a professional buyer and sel lers of software, you can gain an ins ight
into the elements that wi l l make a program most useable to your
customers . Whi le this document is aimed primari ly at program
designers, you can pick up a "feel" for interface desig n . Is your d ifficu lty
in using a program because the designer fai led to make it "fr iend ly, " or is
i t only because you lack specif ic experience in the subject of the
program? Are the customers who wi l l be buying the program from you
wel l versed in that subject area? If not, they wil l have the same trouble
you are having.

As a novice programmer, you wi l l f ind not only specif ic information on
how to implement certain gu idel i nes, but a fai r amount of ph i losophy of
design that should be of help i n areas of design not covered.

The expert program designer may skim past what has become the
obvious-don ' t just g ive error numbers instead of mean ingfu l error
messages-to f ind standard layouts and key-function def in it ions for
i nputs, menus, command structures, and instruction pages .

You can explore additional BASIC basics o f human interface design for
the Apple in

Apple Backpack, Humanized Programming in BASIC, by Scot Kamins,
Ph . D ., publ ished by Byte Books of McG raw- H i l l .

There are two primary functions of a good human i nterface design : make
the product easy to learn, and make it easy to use . We al l know that our
customers can learn to use our programs faster if they look and act l i ke
other programs with which the customer is already fami l iar.

When the Apple I I and Apple Ill series computers f i rst came on the
market, software developers experimented with a wide variety of
interface designs. Some were good, some were bad. Al l were
somewhat hard to learn, because al l were un ique . As t ime went on,
though, the natural personal it ies of the keyboards, d isplays, and
computers led to a remarkable s imi larity of approach to certain basic
problems of ease of use.

This document is drawn from appl ications programs written both with in
and without Apple . It further rel ies on human interface research projects
ins ide Apple and standards developed by independent software
developers .

9

1 0

We are not i n any sense try ing to d ictate what program des igners shal l
and shall not do with in their own programs . Each program has its own
needs; each guidel ine wi l l have its own exceptions . Programs should not
be judged by whether they adhere to each specif ic gu ide l ine presented
in this manual ; they should be judged by whether they are reasonable to
learn , functional to use , and whether they get the job done .

What w e are offer ing i s a set of i nterface gu ide l ines and standard key
defin it ions to which we and many independent developers are
committed , gu idel ines and definit ions your customers wil l know and be
comfortable with. We are releasing train ing material that wil l prepare your
customers to use programs that work in the manner described in th is
document.

Good Human Interlaces:
So Often Elusive

The human interface of a program is as vital to its success in the
marketplace as its accuracy in performing i ts task. An otherwise wel l
designed , powerful p iece of software or hardware is nearly useless if i t is
poorly human engineered . As Dr . F rank G i lbreth , the father of t im e and
motion study said : " I t is cheaper and more productive to design
machines to fit men rather than to force men to f it mach ines . "

Human interface design should come into play from the very beg inn ing.
A good design is no mean task: expect to expend a g reat deal of design
and programming effort toward a smooth interface . For most programs
with a good human interface , the design of that interface consumes
more design t ime, is more prone to bugs , and is harder to test than any
other part .

Apple is in the process of making avai lable a number of packages of
routines that should make this task easier . With in the packages are the
menu drivers and input routines described in th is document . Exact
publ ication times are being set as this document goes to press .

A Planning and Testing Methodology

ttte Prof. .e

I n order to properly address the needs of the users , you m ust f i rst k now
who they are and what their needs are . Software design should beg in
wi th a user-profi le study. Th is study shou ld cover the fol lowing three
phases :

1 . Select the target audience . Begin your human i nterface design by
identify ing your target audience . Are you writ ing for businesspeople
or ch i ldren? Wil l your audience consist of people relaxing at home or
accountants under severe t ime constraints?

2 . Ascertain the level and l im itations of their pre-exist ing knowledge .
You should have an understand ing of how much the target users
know about:

A. using the Apple �omputer
B . the general subject matter your program deals with .

3. Identify their needs. Once you have an understand ing of the
knowledge and l im itations of the users, you can then f igure out what
types of information and level of support the the program wi l l have to
supply .

F igures 1 and 2 are mythical examples of two possib le user-profi les for
programs that f i l l the exact same function : tax plann ing . Even though the
task performed , the formulas used, the raw data required are identical ,
the programs that would result from the two user-profi les might bear l i tt le
external resemblance .

The " research" quoted in the examples is fictic ious-do not start
writ ing a tax planner based on it. (The "case histor ies" in this document
are real ; the samples of display and document designs are fictit ious .)

Carrying out an early investigation such as the ones above requires a
min imum of t ime and can save you man-months of work later on . The
reports need not be works of art ; it is only important that every member
of the des ign team have a clear picture of who the aud ience for this
product wi l l be.

Make sure you consider al l your users :

I n a data-base program recently developed for a computer with large
mass storage, no effort was spared in making every section of the
program as "friendly" as possible . When a particular task proved
somewhat d ifficult to learn or use, the task was reduced by picking up
bits and pieces of it within other tasks . The program slowly drifted
toward being consistently somewhat difficult to learn and use .

(Text conti nued after f igures)

1 1

Figure 1

12

Big, Big B usiness Software Development Corporation

Houston, Texas

"Get the Big, Big Solution to your Little Old Problems"

Professional Tax Planner User Profile Study

July 17, 1983

User: CPA or Public Accountant

Anticipated knowledge of Apple computers: none. (The accountant
may well have purchased the system just because of our program.)

Assumed knowledge of subject matter: Expert

Needs :

1. Staged learning curve. Must feel comfortable in a

minimum time. Extended features can be picked up later.

2. Facility. Must be able to crea t e and edit scenarios

quickly.

3. Clear instructions and error messages. User may have
never touched a computer before. Help should be aimed
toward problems in the use of the system, rather than
explanations of the difference between Short-term and
Long-term capital gains.

4. Professional appearance. Accountants will be using
this package not only to help their clients, b ut to
impress them. The vocabulary used on the display and in
printed reports should be serious and professional. It
may contain accounting jargon in areas that will n ot
cause confusion to clients. The accountant must be

protected against embarrassing errors (and error
messages) ; he may have a client sitting beside him.

S. Supplementary Features: accountants surveyed currently

add or subtract amounts from the "accurate" figures
produced by tax planners. Such items as a rough
estimate of state tax liability may need to be figured
into reports. Provide this facility.

6. Accountants are habitual users of adding machines:
they may be expected to do all intermediate calculations
on their own adder. No calculator function need be
provided.

F igure 2 Aunt Treig' s Software and Snowshoe Company

Petersberg, Alaska
"We'll never leave you out in the cold"

Pers onal Tax Planner User Profile Study

December 21, 1982

User: John Q. Middle to Upper-income Public

Anticipated knowledge of Apple computers : owner with some
experience. (Research indicates that tax planning programs
do not stimulate an initial computer purchase: people who
already own the computer are huying the packages.)

Assumed knowledge of subject matter: None

Needs:

1. The prompting and documentation need to be tutorial:

the user must be guided into finding the necessary
information to enter into the program, carrying out the
kind of explorations with the program that will be most
beneficial, and then suggest where the user should go
from here.

2. Clear content verification and error messages.
"Unlikely" data should be confirmed by user. Help
should be aimed toward problems in understanding the
subject of taxes.

3. Appearance and use of accounting jargon.

Non-professionals will be using this package. The
vocabulary used on the display and in printed reports

should be non-intimidating and not filled with

accounting jargon.

4. User will probably
_

use the program only a few times per

year. There must be a minimum learning curve, even at
the expense of reduced power and fac.ility. A
menu-driven format should ce rtainly be considered as a
first cut.

5. The user has to be asked for a lot of pre-computed
figures: use an expression-evaluator input to allow
them to add, subtrac t, multiply, and divide during
i np ut.

1 3

14

The designers had never considered w ho their audience was beyond
their being "office workers, " but when problems showed up dur ing
testing, they sat down and did a user prof i le. What they found was that
there would be three separate users of the system :

1 . The data-entry persons . These folk would be prof ic ient typ ists who
in it ial ly would be expected to enter a great deal of pre-existin g
information . They might b e temporary he lp, or they m ight be people
who normally performed a d ifferent job. Their needs were for an
i nterface that is quick to learn and easy to use .

2 . The decision makers . These people would be expected to d raw
information from the system, both by cal l ing up data on the d isplay
and by generating reports . They could be expected to be habitual
users of the system : they could hand le a long but gentle learn ing
curve that would give them progressively more power .

3. The key operators . These people are the ones who, i n real l i fe, read
the manuals . They can be expected to spend some tim e with the
system in i tial ly and can be expected to learn how to perform the
more technical operation and maintenance tasks of the system .

Once the users of the system were identif ied, once their ind iv idual
needs were identif ied, the designers were able to "unbalance" their
equal ly-d iff icult interface, so that each user had a level of diff iculty
consistent with their ski l ls and the amount of time they could spend
learn ing the system .

Once the users have been prof i led and a prototype bui l t, it is t ime to
begin testing .

Human interfaces are not made ; they evolve . Software designers are
s imply too close to their product, their computer, and have put up with
the most abysmal i nterfaces themselves for too many years to be able to
outguess the naive user . Products must be repeatedly tested on "real
people" . (" Real people" means the target a udience : as soon as you f ind
yourself sitting in a meet ing with other computerists, al l announcing what
users wi l l or wi l l not feel/th ink/do, you are in trouble. Bu i ld the prototype
and f ind out .)

The job of the designer is to do her best to predict the response of the
user ; the job of the user is to do just the opposite.

Human interface testing is quite d ifferent from the kind of exhaustive
" boundary condit ion" testing used to uncover bugs . You should begin
testing as early as possible , using drafted friends , relatives , and new
employees , to uncover the really big holes i n your design . As you get
c loser to a f in ished product, try it out on larger g roups drawn from the
target population .

It is imperative that the designers actual ly watch people use the
program . Do not just send off copies of the program and expect written
r esponses . G et the users and the designers i n a quiet room together .

Our testing method is as follows . We set up a room with f ive to six
computer systems. We schedule two to three g roups of f ive to six users
at a t ime to try out the systems (often without their knowing that it is the
software rather than the system that we are testing) . We have two of the
designers in the room . Any fewer , and they m iss a lot of what is going on .
Any more and the users feel as though there is always someone
breathing down their necks .

The in itial ground rules are that no questions w i l l be answered , as by the
t ime the formal testing beg ins , we can supply a draft of the man ual .
(Usually by the second group , some g laring defects in the interface have
shown up , and we have to g ive them help getting past t h e stumbl ing
blocks .)

N inety-five percent o f the stumbl ing blocks are found b y watch ing the
body language of the users . Watch for squint ing eyes , h unched
shoulders , shaking heads , and deep, heart-felt s ighs . When a user h its a
snag , he wi l l assume it is "on account of he is not too br ight" : he wi l l not
report i t ; he wi l l h ide i t . Make notes of each problem and where it
occurred . Question the users at the end of the session to explore why
the problems occurred . Do not make assumptions about why a user
became confused . Ask h im . You wi l l often be surpr ised to learn what the
user thought the program was doing at the time he got lost .

We have found that prepared questionnaires handed out at the end of a
session are of l i tt le value : you wi l l seldom predict the problem areas
before testing , and users wi l l l ie to spare everyone's feel ings . (I f you had
f igured out the problem areas , you would have already fixed them .)

General ly , two o r three groups o n one occasion is more than suff ic ient :
patterns wi l l emerge almost immediate ly . You should have at least one
more bank of testing after any major revision; as the next example
shows , one often jumps out of the fry ing pan , into the f ire .

15

1 6

The True Anecdote :

Herein follows a true anecdote that i l lustrates how d iff icu lt the most
simple human interface issue can be , and why thorough testing on real
people is so important . (If you dis l ike true anecdotes , p lease skip ahead
to "Goals . ")

As we tune i n , the authors of APPLE PRESENTS . . . APPLE , both of
whom pride themselves on clever interface design , have anguished for
hours over diff icult passages in their program . I t was to turn out the i r
guesses were quite accurate in sa id diff icult passages. I t was the
s implest question of al l that caused al l the problems . . .

Problem :

User profi les :

Test user
profi les :

F i rst design :
Prompt:

Anticipated
problem :

F irst attempt:
Prompt:
Fai lure rate :

Reason :

i n APPLE PRESENTS . . . APPLE , an I ntroduction to
the Apple l i e Computer , the train ing program for
teaching fundamentals of using the new Apple l i e
computer , f ind out i f the user is working with a color
monitor.

new owner , customer in a computer store , or
member of a class learn ing to use Apple
computers .

customers in a computer store , non-computerists
in a classroom environment , friends , and relatives .

A color graphic would be d isplayed .
"Are you using a color TV on the Apple?"

Those who were using a monochrome mon itor i n a
classroom or computer store situation wouldn ' t
know whether the monitor was black and white or
was color w i th the color turned off .

A color graphic was displayed .
" Is the picture above in color?"
25%

As anticipated , but incorrectly overcome , those
seeing black and white thought their color m ight be
turned down . They didn't answer the question
wron g ; they turned around and asked one of the
authors whether the mon itor i n question was color
or not. A decision was made that the authors could
not be shipped with each d isk.

Second attempt :

Prompt:
Fai lure rate :

Third attempt :
Prompt:
Fai lure rate :

Reasons:

Fourth attempt :
Prompt:
Fai lure rate :

Reasons:

Fifth attempt:
Prompt:

Fai lure rate:

A smaller graphic with large- letter words in their
own viv id colors was substituted :

G REEN BLUE ORANG E M AG ENTA
"Are the words above in color?"
color TV users : none
black and white mon itor users: none
green-screen monitor users : 1 00%

The graphic remained the same.
"Are the words above in more than one color?"
color TV users: none
black and white monitor users : 20%
green-screen mon itor users : 50%

the black and white monitor users who answered
incorrectly admitted that they d id so on purpose .
(Our methods for wring ing the i r confessions shal l
remain proprietary .) 50% of the green-screen folk
considered that they were looking at both b lack and
green- two colors- and answered the question
accord ing ly.

Same display of graph ic and colored text
"Are the words above in several d ifferent colors?"
color TV users : none
b lack and white mon itor users : 20%
green-screen mon itor users : 25%

By this time, the authors were prepared to supply
everyone who bought an Apple with a free color
monitor, just so we would not have to ask the
question . It turns out that around 20% of the people
were not real ly read ing the question . They were
responding to :

"Are the words above, several d i fferent colors?"

Same display of graphic and colored text
"Do the words above appear in several d ifferent
colors?"
none.

1 7

1 8

I n case it appears the authors were simply du l l fel lows, b e i t known that
this was a ful ly- interactive train ing program in excess of 1 OO K, and th is
was the only i nterface issue that requ i red more than one correctio n . I t
clearly exempl if ies how even the most careful designers can total ly m iss
when guessing at how users are going to respond .

Had the designers not tested the program, it is probable that dealers
would not have used the program in their showrooms, as they would
have wearied of tel l ing potential customers that they were/were not
us ing a color TV and that the APPLE PRESENTS . . . APPLE program was
being very stupid to ask the question l ike that. (Potential customers, of
course, wouldn ' t have fal len for such an explanation : they would have
known it was the computer that asked the question, and everyone
knows that one should always buy the computer that asks good
questions .)

I t is vital that programs and manuals b e tested early and often with users
from the target aud ience ; this testing should be an integral part of any
test ing plan . This test ing seems l ike a lot of extra effort, but in pract ice, i t
really isn 't, beyond the mechan ical diff icult ies of getting your equ ipment
and test group together. (Computer stores, col leges, and shopping
cent ers are often good random-testing locations .) The above testing
cycles took only four days : the f i rst two days were on-site, us ing new
Apple employees . Only two days of test ing required any set-up work at
al l, and the overal l improvement to the product was clearly worth the
effort .

Even if the interface had not changed at al l, it would have been worth i t
just to be able to ward off all the self-proclaimed experts with the i r (day­
after-going-to-production) comments of " Boy, I sure wou ldn ' t have done
it that way. A lot of people out there are gonna have trouble . ' ' What joy to
turn to such people and announce with a clear conscience, "Wel l, we
tried it out on 1 09 people, and they al l sai led through with f lying colors. "

Goals

Simplicity

User interaction should be s imple and easy to remember . Spend the
necessary time to design a user interface that presents the best tradeoff
between alternate design issues.

Once the user has become basically fam i l iar with the human interface, if
she guesses at an unknown response, she should be correct 95% of
the t ime .

Simpl ici ty is d iscussed in detail in the next section, G eneral Program
Structure .

BASIC: When a package contains several programs on a diskette, the
programs should always be selectable by the user via a menu display. The
user should not have to RUN (or worse, BRUN) individual programs in

immediate mode to get the package to function. Each program should end
by causing a "menu" program to be run, which should provide the
appropriate menu display. The menu program should be a simple program
which displays a menu of all programs to which the user will be given direct
access, and stores information on the environment in which it runs; for
example, it can set any HIM EM: or LOMEM: required by a program on its
menu. An example of this is INDEX on THE SHELL GAMES diskette.

Consistency

All programs written for a g iven computer should have as g reat a
commonal ity as is practical. The purpose of these gu idel ines and
standards is to achieve a level of consistency across al l products
designed to run on the Apple, a level that wi l l make learn ing your product
easier, but not be so r ig id as to stifle your abi l ity to create the specif ic
human interface best suited to your particu lar appl ication.

Al l programs produced by a g iven software house should perform the
same function in the same way . The same key sequence must not do the
opposite th ing in d ifferent products (E=edit, E=era dicate) . Many
software houses have their own gu idel ines, gu ide l ines from which we
drew in preparing this document . These indiv idual gu ide l ines tend to
outl ine in far greater detail the program "personality" that the software
house wants to project. If you have not yet put together such a
document, may we suggest you do so. It is a very effective way to
e l im inate those interface battles that tend to occur about three days
before release to production-or three days after.

Al l software should be self-consistent: menu formats should be identical.
If G ET or READ KEY is used for one input, it should be used for al l inputs.
I f the LEFT-ARROW key deletes c haracters in one part of the program, it

1 9

20

should delete characters in all parts of the program . If you are working on
a large project, be sure to spend enough t ime in team meetings being
sure that everyone is on the same track-all too often the three or four
sections Qf a program end up with an ent irely d ifferent "feel . " At the
same time . avoid r ig id ity : human interfaces must be tested on real
people . The agreed-upon interface at the beg inn ing wil l undoubtedly
need chang ing . once you try it out on real people .

The user should b e able to perform the desired task in a s l i tt le
(perceived) t ime as possible, with the min imum (perceived) complexity .
Match the program to the ski l l level of the user . If you are doing a pr ic ing
program for a shopkeeper . do not ask her what her h istoric e lasticity of
demand has been without letting her know what it is and g iv ing her the
tools to estimate it . (Also, the question may be unnecessary : the fact
that you asked it in a s imi lar program you wrote for a Fortune 500
company is no reason to ask it of a shopkeeper .)

Self-teaching

Often there is a trade-off between ease of learn ing and ease of use .
Careful ly balance your decisions: if the program is too diff icult to learn,
salespeople wi l l not learn it and . thus. not sel l i t . If endless instructions
and volum inous menus make it slow and cumbersome to use . people wi l l
get frustrated and te l l the i r fr iends not to buy it .

You wi l l f ind a number of gu idel ines devoted to overcoming this problem .
Both syntactic and content help should be avai lable at the point at which
it is needed; designers are successful ly doing that without encumber ing
the experienced user. See : He lp and Menu . Many designers have
sucessfu l ly created a multi-t iered interface . See: Novice/expert modes .

Speedinec:;s

Actual speed of operations is important . but perceived speed is even
more important . It may seem important to conserve keystrokes . but it is
more important to conserve "brain strokes" and design the interface so
that there is a natural flow . A more important goal is to reduce the amount
of unproductive time . which is t ime spent decid ing how to perform the
desired task rather than t ime spent performing the task . This concern
should permeate the ent ire design process .

React to user's input immediately . A user wi l l interpret any delay of more
than a few tenths of a second after he has pressed R ETU RN to m ean

that either the program or the user has made an error. If you need to
make a computation , f i rst acknowledge that you have accepted the
input.

In train ing or educational software , it is doubly important to react
immediately to test questions. The greatest retention of knowledge
occurs when response occurs either with in one second or not unt i l the
end of the entire test. Apparently , waiting five to ten seconds for a
correct/not correct judgement is so frustrating that people lose
i nvolvement with what is going on.

Minimum Strain on /'Pe User�s Me ,. . .,.V

Programs that are not used l iterally ev ery s ing le day wi l l be forgotten .
Users wi l l not remember command words , the names of their f i les , nor
the fact that you are accepting data not with R ETU RN, b ut with CTRL-V.
(Violet was the name of your very f i rst computer science teacher.)

Computers are notoriously good at remembering the above type of
i nformation. Share it with your user: make sure the information needed is
avai lable where and when needed.

1-lon�sty

Do not l ie to your users . Do not say , " Fi le loaded" when the f i le is not
loaded , only the name of the fi le has been " loaded , " whatever that
means.

General Program Structure

The contemporary microcomputer user may have no pr evious
experience with a program . Therefore , a s ign if icant fraction of the
programming effort must be dedicated to the creation of an intuit ively

21

22

natural human interface. The program must, in the s implest way
possible , anticipate the user's questions and needs and be prepared to
answer and f i l l them the moment they arise.

There are two important pr inciples being followed in the most successful
human interfaces designs.

Keep It Simple

The external appearance of the program is as s imple as possib le. The
user does not get lost within a maze of branches. (You may safely
assume that the fi rst-t ime user has not read the manual .)

The number o f screens and menus i s kept to a m in imum . The ALF'M
music editor and VisiCalc'M are excel lent examples of this concept.

Displays are kept clean and s imple . Q uestions posed are clear and free
of ambiguity .

Flu id ity : Movement within the program is easy and flu id . The structure i s
s imple enough to allow the user to move from place to place without
becoming confused.

Tools : The user is provided with the necessary tools to work with the
program . For example, in a personal f inance program, an input
requesting annual rent should al low an answer such as 435.00 * 12 or
435.00 X 12, and not expect the user to work out the answer i n h is or
her head . If a f i le name must be selected from the disk, those f i le names
are either displayed or avai lable for d isplay .

Make It Familiar and Intuitive

Everyth ing the program expects the user to do is e ither fam i l iar or feels
intu itively r ight. The user should feel comfortable with in the program and
the program should be supportive, responding to the user's best guess
of the right th ing to do at any one moment. Everyth ing in this document
really leads toward an intu itively correct program . But matters of intuit ion
cannot be thoroughly dissected : the ult imate test l ies with whether a
new user can feel master of the program with in a very short t ime, or
whether he wi l l s imply f lounder around, try ing to f igure out what the
program wants and why.

Special Key Functions Are Consistent
If a user wishes to complete an input, she knows to always press the
R E T u R N key . E s c A P E always al lows the user to escape back
whence she came .

Anticipation

The program anticipates as much as poss ib le the needs
and questions of the user and is prepared to hand le them as they ar ise.

Intelligence
The program does not ask for unnecessary data, data
wh ich can be derived from information already at hand, or data already
asked for and received before .

Confirmation

The program tries to prevent catastrophic errors . If the user commands
that a 1 OO K text f i le be deleted, the program should require cogn izant
confi rmation :

Are you sure you want to destroy 5 days' work? Type DESTROY 5
DAYS' WORK to confirm .

If the user commands that a new f i le be saved under a name already
being used for a 1 OO K text f i le, the program wil l announce that saving
the f i le under this name wi l l result in the destruction of the or ig inal f i le,
and then present a confi rmation question s imi lar to the one above if the
user says to save the f i le under the dupl icate name anyway .

Tree Structures

The tree structure of a program is designed to feel natural to a user, not
the programmer . For exampl e, one could design a program which wil l
both create and play music. Saving created music and load ing that music
for later playing are h ighly s im i lar programming tasks and can qu ite
possibly be done using the same basic subroutines . But wh i le it is
structurally logical to share code between them, it is intu it ively wrong to
dump the two options adjacent to each other on a men u . Saving should
be grouped with other music-creation options ; load ing with both creation
(for editing), and playing.

Novice/Expert Modes

The f irst t ime a user runs a program he has qu ite d ifferent needs from the
tenth t ime he uses it . I n the beg inn ing, he needs as much information
presented as possible so that he can use the program with a m in imum of
learn ing . Later on, with a program used habitual ly, he wants speed and
s impl ic ity . He wants only i nformation pertinent to the specif ic task be ing
carried out, not a lot of instructions on how to delete an incorrect
response.

Most large programs now have some sort of ut i l i ty/configuration section .
The configuration sections often enable the user to select date and t ime
formats, color vs . black and white, and whether or not to have sound . I n that

23

24

section , you can also enable the user to select a ski l l leve l . The rest of
the program can then use the result ing flag , when set to expert , to
s impl ify verbiage and perhaps enable more f lexible branch ing with in the
program-branching that would serve to get the novice into trouble but
g ives the expert the added f lexibi l ity she needs .

The ski l l level selection could be more soph isticated , perhaps with more
than two levels, perhaps based on the type of user . For example , a
s ing le tax planner program might better br idge the gap between
accountant and Apple owner if the accountant could select , " Expert at
taxes , Novice at Apple" and the Apple owner could select "Novice at
taxes, Expert at Apple " . (The possible combinations and permutations
are tru ly boggl ing .)

Ending

The user is given a way out of the program . Even if your program is on a
copy-protected disk and there really is no way out , g ive the user an End
option and then tel l h im that he may now insert another d isk and press
RETU R N , or whatever . Users feel positively trapped by programs with
seemingly no end ; they forget that the power switch solves al l .

BASIC programs should also reset and clear H i res screens and revert
to normal text condit ion upon a normal exit in order to prevent
interference with other unrelated programs .

T h e programs should also reset other system parameters t o customary
settings .

The balance of th is document presents more concrete gu ide l ines for
specif ic program areas .

Input

Two major languages native to the Apple I I and Apple Ill series
computers are BASIC and Pascal . Each has an input routine as part of
the language . These input routines are used in many programs , and your
customers have become fami l iar with the m . However , they are not
particularly wel l su ited to most professional appl ications . As a result , in
the past, each software engineer has created her own routi ne , usual ly a
variation of one or the other "standard" input routi ne . The d i rection of
this creative technology has been toward more sophisticated i nput
schemes which al low insertion and deletion of characters . This
prol iferation of inputs , each with its attendant cursor and special keys ,
has left the poor user rather bewildered .

Computer

Apple ll's

Apple Ill's

Move left

L E F T A R R O W

L E F T A R R O W

Enter The Three Cursors : New Apple owners are being trained to
recognize and use three d ifferent inputs : BASIC's, Pascal 's, and the
new insert/delete input . They are being trained that they can tel l what
i nput they are faced with by the kind of cursor presented .

BASIC uses the bl inking box cursor which overlays a character . Pascal
uses the solid box cursor which overlays a character . The new input
uses a b l ink ing under l ine cursor which l ies between characters .

Of all the standards being presented, this is the most important : The user
should be able to tel l the rules of the input from the k ind of cursor be ing
displayed . If everyone conforms to the use of the proper cursor for each
personal ity of input (defined further below), Apple users wil l be rel ieved
of a major source of frustration . I t is real ly hard to concentrate on learn ing
to do e l l ipsoid analysis of pork be l ly futures when you can 't f igure out
what key to press to correct a typo .

If you need additional features, then keep the or ig inal cursor and enable
the original features : make your input scheme a superset of the or ig inal .
If you need to use an entirely different kind of input scheme, p lease
select a different cursor and train your users to recognize it as yet
another entity .

The (Apple II BASIC) Blinking- box Cursor

Move right Insert Delete Accept Cancel

R I G H T A R R O W * R E T U R N C O N T R OL- X

R I G H T A R R O W R E T U R N C O N T R OL- X

*A user can both insert and delete within a BASIC input line using Es c A P E -cursor keys. As a practical matter, however, few other than
experienced BASIC programmers can actually do so with any facility, as the screen ceases to reflect what the character-input buffer
is actually holding.

Computer

Apple ll's

Apple Ill's

Move left or right

The (Pascal) Solid-box Cursor

Insert Delete-from-end Accept

L E F T A R R O W R E T U R N

L E F T A R R O W R E T U R N

Cancel

C O N T R OL- X

C O N T R OL - X

25

�26

The

Apple II Series

Keystroke

Necessary :

L E F T - A R R O W

R I G H T - A R R O W

C T R L - D

D E L E T E

R E T U R N

C T R L - B

Editing Operation

moves cursor left within input line.

moves cursor right within input line.

deletes character to the left of the cursor - Apple I I & I I + .

deletes character to the left of the cursor - Apple l ie .

accepts entire response, regardless of current cursor position.

has no effect on a display with a single input. On a multiple- input
display (see next section) , c T R L - B accepts entire response,
moving user back to previous input.

Useful if implementation language allows sufficient speed :

C T R L - X

C T R L - Y

C T R L - R

Optional

C T R L - P

Notes

deletes all characters on the input line.

deletes all chars from present cursor position to end of line.

recalls display of default response. If no default , then it acts the
same as c T R L - X .

Prints the contents of the display on the default printer.

Because this input is new to Apple I I and Apple I I + users, it is
particu larly inportant that you expressly state on the display that c T R L - o

is used to delete characters . (Apple l i e users have been trained how to
use th is i nput on the APPLE PRESENTS . .. APPLE d iskette , but a
reminder to use the o E L E T E key would be he lpfu l .)

Typ ing any pr int ing character wi l l automatical ly i nsert that character
i nto the input l ine at the current cursor position .

Press ing R E T u R N with the cursor anywhere with in the i nput l i ne w i l l
accept the ent ire input .

Defau lt responses are d isplayed wi th the cursor at the end of the
response .

R E T U R N

L E F T - A R R O W

R I G H T - A R R O W

C T R L - D

will accept that response.

will move cursor back into the default response, enabling the
user to edit it.

will signal that you wish to append material to the response.

(Apple I I & I I +) will delete a single character from the end of a
response and signal that you wish to edit the response.

D E L E T E (Apple l ie) will delete a single character from the end of the
response and signal that you wish to edit the response.

Pressing any other key wi l l clear the default response and begin a new
response in i ts place .

Apple Ill Series

Keystroke

Necessary:

L E F T - A R R O W

R I G H T - A R R O W

Either:

C T R L - S P A C E ,

C T R L - L E F T -

A R R 0 W , or D E L E T E

Either:

C T R L - R I G H T ­

A R R O W or
C T R L - D E L E T E

R E T U R N

C T R L - B

C T R L - R E T U R N

C T R L - E

C T R L - K

C T R L - U

Optional:

C T R L - P

Notes

Editing Operation

moves cursor left within input line.

moves cursor right within input line.

will delete the character to the left of the cursor.

will delete the character to the right of the cursor.

accepts entire response, regardless of current cursor position.

has no effect on a display with a single input. On a multiple-input
display (see next section), c T R L - R E T u R N accepts entire
response, moving user back to previous input. Programs often
use

in addition to c T R L - B for accept and move back c T R L ­

R E T u R N is indistinguishable from c T R L - M , or c T R L ­

whatever�character-your-user-has-defined -to-be-in-M 's­
standard-keyboard-position Please take this potential risk into
account before enabling c T R L - R E T u R N as well as c T R L - B .

deletes (erases) all characters on the input line.

deletes all chars from present cursor position to end of line .

(Un-do) recalls display of default response. If no default, then it
acts the same as c T R L - E .

Prints the contents of tl<le display on the default printer.

Typing any pr int ing character wi l l automatically i nsert that character into
the input l ine at the current cursor position .

Pressing R E T u R N with the cursor anywhere with i n the input l i ne wi l l
accept the ent i re input .

27

28

Default responses are d isplayed with the cursor at the end of the
response.

R E T U R N

L E F T - A R R O W

R I G H T - A R R O W

C T R L - S P A C E

or D E L E T E

will accept that response.

will move cursor back into the default response, enabling the
user to edit it .

will signal that you wish to append material to the response.

will delete a single character from the end of a response and
signal that you wish to edit the response.

Using the New Input on an Apple II or Apple Ill Series Computer

The program input statement asks the user for information by d isplay ing
a verbal prompt. Prompts shou ld terminate in a colon (:) or g reater-than
sign ()) if a statement , a question-mark (?) i f a question . The prompt is
fol lowed by 2 spaces on an 80-column display, 1 space on a 40-column
d isplay .

A default answer may be displayed , with the cursor fol lowin g , in wh ich
no f ie ld length is denoted . I f there is no default response offered , or the
defauit is rejected by the user, the program can d isplay a f in ite input f ie ld
with a ser ies of periods (standard character set) or "ghost" under l ines
(h i - res character set) . The latter character is essential ly a shortened
under l ine with every other dot turned off .

The specif ication of the number of spaces between the prompt and the
i nput f ie ld is qu i te important : users can become confused as to where
their answer beg ins . If al l programs adhere to one space with 40 column
displays , 2 spaces with 80 column displays , the users w i l l know whether
they have inadvertently typed a lead ing space or not. (As a separate
issue , leading and trai l ing spaces should be rout inely stripped off , un less
they are specif ical ly needed .)

Keystroke errors are best trapped immediately : i f you are accepting a
decimal number , do not accept a letter such as "A" or " B " .

Here i s the example o f the input which i s taught on APPLE
PRESENTS . . . APPLE for the Apple l i e :

What i s a "drift"?

) A w h o l e L o t o f c a t t l e _

(Consider the under l ine to be bl ink ing - the pr inter was not able to qu ite
capture the effect .) The problem presented is to change the answer to
read :

) A h e r d o f c a t t l e

To edit the response, the user f i rst moves back to the end of the word
" lot , " using the L E F T A R R o w . I t looks l i ke th is :

) A w h o l e l o t o f c a t t l - e

) A w h o l e l o t o f c a t t - l e

) A w h o l e l o t o f c a t _ t l e

) A w h o l e l o t o f c a - t t l e

) A w h o l e l o t o f c _ a t t l e

) A w h o l e l o t o f _ c a t t l e

) A w h o l e l o t o f _ c a t t l e

) A w h o l e l o t o _ f c a t t l e

) A w h o l e l o t _ o f c a t t l e

) A w h o l e l o t - o f c a t t l e

The user is next instructed to press the D E L E T E key several t imes , unt i l
the words "whole lot" have been de leted :

) A - o f c a t t l e

Next , the user types the word "herd " :

) A h - o f c a t t l e

) A h e _ o f c a t t l e

) A h e r _ o f c a t t l e

) A h e r d - o f c a t t l e

29

30

Final ly, the user can press R E T u R N to accept the ent i re response :

) A h e r d o f c a t t l e

C ursor Movement with no Action Taken

Sometimes programs such as word processors require pure cursor
movement with no action taken . The standard keys i n such cases are as
follows :

Keys for up . down, left, and right motion :

Apple II and Apple II Plus:

l = up
J = left K = right

M = down

These keys are often prefixed with an ESCAPE .

Apple l i e : the four arrow keys
Apple Ill: the four arrow keys

Keys for vertical, horizontal , and diagonal
motion :

Apple I I , Apple II Plus , and Apple l ie :

U = up , left l = up O = up,right
J = left K = right

N = down, left M = down , = down, right

These keys are often prefixed with an ESCAPE .

Apple Ill:

Full cursor movement on the Apple /// is
done using the numeric keypad :

7 = up, left 8 = up 9 = up, right
4 = 1eft 6 = right
1 =down, left 2 = down 3 = down,right

In the olden days of computers, one typed a command to a computer
onto a punched card . One then walked down the hal l to the computer
room, left said card, and returned some hours later to f ind that the
command was syntactically incorrect. Later , t ime-sharing changed al l
that. Now one could type in the command, then press a single key cal led

R E T u R N which would send the command down the hal l . Soon (1 5
seconds or so later) the computer would announce the command was
syntactical ly incorrect.

Many microcomputer programs sti l l wait around unti l the user has made
a thorough fool of h imself and pressed R E T u R N before send ing the
resu lts "down the hal l " to the program unit wh ich does keyword
match ing. This unnecessary waste of process ing tim e and power is
i nherent in the bui l t - in i nput routines of the languages which have been
ported over to micros from t ime-share systems. Since we are general ly
supplanting those old routines with the new b l i nki ng -under l i ne routi n e ,
wh ich is accessib le and can be taken apart , th is waste n e e d n o t go on.

Keyword match ing is used i n programs which are command-dr iven and
programs with l ists , such as f i le names , from which a user m ust select
by typ ing i n the name of the select ion. Often , the human interface is
rather sparse :

Command Word? _

F i le Name? _

Enter command and command-object :

or , even more s imply , (for the program mer)

Command-driven programs offer a speed and f lex ib i l ity not general ly
attainable in a menu-driven program . They also typical ly offer a much
steeper learn ing curve-so debi l i tat ing a learn ing curve that
salespeople wil l often avoid se l l ing a command-driven program
because of the time and practice required for them to g ive even a
rud imentary demonstration. Resu lt? Lost sales .

I n order to type a command or l ist selection without prompting , the user
must learn what words he can type at any one point in the program. This
learn ing problem can be overcome in a straightforward manner by
displaying a l ist of all options then avai lable. Typical ly , th is can be done
by creating a dipplay s imi lar to the standard menu format , with the center
region devoted to the l ist of words.

31

32

Commodity Analyzer Bel ly Processes Pork Bel l ies

Commands

display

graph

compute

buy

sell

eat

delete

Type your instruction and press RETU R N : _

Inventory Types:

complete bel lies

partial bel lies

dancing bellies

Options: E s c A P E to leave 0 P E N - A P P L E - ? for help

As the avai lable options change , so do the options d isplayed . Thus , the
user knows at every point exactly what she can select . (The display of
command words could be made optional through the novice/expert flag ;
variable l ists of words , such as f i le names, should always be vis ib le .)

A second , more subtle learn ing problem must b e handled a different
way : Typical ly , a command word system wi l l a l low abreviations : why
make the user type in "display dancing bel l ies" when "d i d" is al l that is
requ i red to make the user 's intentions clear? (Display and Delete both
start with d. Once the i is added , display is the only possib le answer . The
only command-object that currently starts with a d is "dancing bel l ies . "
Thus, the user's mean ing i s not ambiguous.

Usual ly the user has e ither had to look up abbreviations of command
words in the manual , or discover them by trial and error . Words from l ists
such as current file names have simply had to be typed out completely ,
with no abbreviations accepted . The Disambiguator changes al l that.

The algorithm for f iguring out at what point the user has typed enough so
that an answer is unique (not ambiguous) is really qu ite s imp le : on each
keystroke , the l ist of possible words is scanned for a match-up of as
many letters have been typed so far . As soon as only one match can be
found , the word has been found and can be completed by the program .
I n the above example , the sequence would look l ike th is :

Type your instruction and press R E T u R N .

D -

No un ique match is found (both delete and display match) so the input
only echos the user's character .

Type your instruction and press R E T u R N .

D I - s p l a y

User's response is no longer ambiguous: the program suppl ies the
remain ing characters in the opposite case from that the user is typing.
(An alternate character set can be used when the environment permits,
so that the user can type both uppercase and lowercase characters.)

Type your i nstruction and press R E T u R N .

D I S - p l a y

The user has not noticed that the computer has made a match, which
happens often with a touch-typist. There is no penalty : the new
character is echoed and the program now suppl ies just that portion of
the command word sti l l remain ing .

Type your i nstruction and press R E T u R N .

D I S P L A Y -

The user has noticed that the answer has been found and has pressed
the terminat ing character, i n this case a space. The program completes
the word, using the case that the user has been typing and adds the
space to the end .

Type your instruction and press R E T u R N .

D I S P L A Y D _ a n c i n g b e l l i e s

As soon as the "D" in "dancing bel l ies" has been typed, the remainder of
the phrase becomes clear.

Type your instruction and press R E T u R N .

D I S P L A Y D A N C I N G B E L L I E S

The user term inates the input with R E T u R N and the fu l l answer is
echoed and acted upon.

The Disambiguator input has been used in a number of programs over
the last two years : i t has proven to be qu ite successfu l . I t lets people
get used to abbreviations at the i r own speed, without the i r hav ing to
look up anyth ing or get yel led at by the computer for us ing the wrong
abbreviation, yet it accompl ishes th is with no penalty to the touch­
typist who is just as happy pound ing out the ent i re word . As a f r inge
benefit, it speeds up the program 's response tim e : when the user
presses R E T u R N , the program already knows what the instruct ion is
and that i t is legal .

33

34

Pascal programs hand l ing l ists of up to th i rty words i n any one context
have been implemented with this routine in Pascal . Pascal programs
with very long l ists or any BASIC programs need the rout in e to be
implemented i n native code .

The Disambiguator algor ithm is j us t an example o f the kin d o f
processing that can go on actively du r i ng the user 's i nput to make the
user 's l i fe a l i tt le eas ier . There is no longer any techn ical reason for
programs to stand by whi le users f lounder , waiti ng to pounce on them
when they press R E T U R N .

The user can control the movement from one display to the next by
pressing the R E T u R N key (or, opt ional ly but consistently , s P A c E bar) .
H e is i nformed by a message such as , " Press the R E T u R N key to go on
to the menu . " on the bottom l i ne of the screen . (De lay loops are d i ff icu l t
to judge as to the proper duration , and become somewhat insu l t ing to
the i nte l l igence of the user .) The actual prompt message shou ld g ive
some ind ication as to what wi l l happen next , rather than s imp ly say ing
" Press R E T u R N to continue . "

The educational software commun ity has pretty much se lected
s P A c E bar i nstead of R E T u R N to control movement : ch i ld ren were
found to occasional ly press R E s E T by accident on the older Apple l l ' s
and Apple I I Plusses . P lease b e consistent in your cho ice o f R E T u R N o r
s P A c E bar , not only with in a g iven program , b u t across your complete
product l i ne .

Do not tel l t he user to ' ' press any key . " On the App le I I ser ies
computers , you cannot read every key by itse l f : R E s E T , s H I F T ,

c o N T R o L . We have also found i n test ing that new users , i n particu lar ,
pan ic when asked to press any key . Over 80% of them wi l l turn around
and say , " but what key shou ld I press?" I n question ing them about th is
response, we discovered that they are qu ite convinced that even
though the prompt impl ied al l keys were O K to press , some cou ld be
dangerous . Of course , they were qu ite r ight .

Whi le you should not te l l them to press any key , you may , i n th is
specif ic case on ly , accept more than the key specif ied . Both R E T u R N

and s P A c E bar should be accepted , even though on ly one is prompted
for : users grow used to using one or the other . You may optional ly (and
on ly i n th is specif ic case of using the key as a switch) want to accept
most keys , so that a user stri k ing out for s P A c E bar and pressing V by
accident wi l l not be penal ized . Do not accept E s c A P E i nstead of
R E T U R N or S P A C E bar .

Displays with several input statements:

• Movement from input to input is sequential : the user may move back
and forth but not randomly skip around .

• Pressing the R E T u R N key automatical ly posit ions the user at the
next input statement .

• Pressing c T R L - B automatical ly posit ions the user at the previous
i nput statement . The prior response to the previous i nput wi l l be
d isplayed as that i nput 's defau l t .

• The last input on the display wi l l normally ask if the user has
completed all responses to her satisfaction .

• No input wi l l be accepted without the user expl ic itly terminating it,
usually with R E T u R N or c T R L - B . The fact that the user has used up
a l l t he spaces avai lable in t he f ie ld should no t automatical ly move
the user to the next question .

Errors

Error Trapping

I n most situations, user inputs must be checked for val id i ty . Account
numbers, employee numbers, and dates are just a few examples of
i tems that should be checked to see if the data requested is on f i le or
plausible . Numeric inputs should be screened for values too smal l or too
large, if extreme values are inval id or potential ly damaging to the
program . An error message l ine should be provided in a consistent
location toward the bottom of the display .

Many types of errors can be circumvented through software design : If,
in testing, you f ind users repeatedly making the same kind of errors,
change the software .

Make your program insensitive to upper/lower case when no d istinction
is necessary . Be particu larly aware on Apple I I programs : the new
Apple l ie can generate lower-case characters . (Make sure you only

35

36

transform characters : many of those obscure punctuation marks are
often-used special characters on foreign keyboards .)

Spaces should never b e s ignificant . Users look upon a space as a lack of
a character , not as a character . Str ip lead ing and trai l i ng spaces , and
interven ing spaces too , when practical . For example , when prompting
the user for the name of an existing f i le , should the user respond "door
bel l " , f i rst look for a l i teral match , then str ip spaces , so that you can
match with the user 's or ig inal , but now forgotte n , "doorbe l l " .

Likewise , do not refer to "the R E T u R N character" , u n less you are
prepared to del iver an essay . Users steadfastly cl ing to their bel ief that
R E T u R N is an action , not a character .

Do no t make commands posit ion -dependent . Fo r examp le , do no t se t
u p a stream o f " parameters" such that i f t he user wishes to change the
fourth parameter , she must type three commas to s ign ify acceptance
of the f i rst three "default" parameters . I f the m ean ing of the above
sentence is not immed iate ly clear , you have gotten the po int .

When a menu offers a set of choices , or the user is otherwise
prompted to respond to a restricted set of opt ions , then the program
should recognize on ly the responses that are val id . Do not offer the
user a menu of options , most of which cannot be used. I f the user
needs to select a f i le before dec id ing to Ed i t , Save , o r De lete , let h i m
know. Don't make h im go down through a l ist , g ettin g t h e same
unen l ighten ing messag e , "Option not current ly val id. "

Enable only those keys you have informed the user you are enabl i ng .
Do not prompt : "P ress E s c A P E to end , R E T u R N to cont in u e . . . " and fai l
to announce that s P A c E bar wi l l e l im inate th is afternoon 's f i les . The
classic negative example of th is is an early Apple text ed itor with a
ver if ied replace option . Accord ing to the manual (no instruct ions were
d isplayed) , R meant replace th is occurrence , s P A c E bar s ign i f ied do
not replace th is occurrence . The actual code was such that any
character with an ASC I I value of 82 (R) or above caused a
replacement , and any character with an ASC I I value less than 82
caused a ski p . Therefore , " [" would replace , " 8 " would not , " /\ " wou ld
rep lace , " , " wou ld not. Confusion yet re igns over that o n e .

Having presented t h e ru le , here is t h e exception : w h e n u s i n g s P A c E

bar or R E T u R N as a switch (" Press R E T u R N to conti nue") you may want
to accept al l reasonable keys surround ing the intended target , so as to
not penal ize the user for poor aim .

Error Messages
Error messages should alert the user, identify the problem, and d i rect
the user toward solutions. They should do so with a m in imum of
d isruption : ring the bell once-the whole room doesn ' t need to know the
user has yet again made a fool of h imself .

Remove the error message as soon as the user takes proper action
to correct the condit ion . Users wi l l be l ieve you : as long as the
message is there , they wi l l continue to correct the problem . I t has
been shown that attempt ing to correct a prob lem that has already
been corrected wi l l usual ly result i n a brand new prob lem .

There are two classes of error messages that e i ther i n t im idate or
infu riate users .

First, the computer-g ibberish special :

Appl ication error # 1 463

Error messages should not only provide information (i n the user's native
tongue, not computerese) as to what the error was, but should offer
solutions as to what the user can do to correct the situation . A better
message might be :

You have not yet selected the name of the f i le you want to work
from . Please type the name of one of the above f i les .

Second, the it 's-easier-to-flag-an-error-than-correct - i t error :

Data entry error : no comma after Aardvark

Users soon catch on that if the computer/language/program (everyth ing
gets blamed) knows for a fact that there shou ld be a comma after
Aardvark, that the computer/language/program shou ld supp ly said
comma. Therefore, the computer/language/program is either real ly
stupid or is lying .

Your appl ication should have a designated area of the screen where
error messages are displayed . The usual location has come to be l ines
23 and 2 4 of the display , but whether you choose these l ines or not,
make the location consistent . Long help instructions may requ i re a
d ifferent "page" . Preserve the contents of display as much as possib le
whi le provid ing help, and once help is term inated, restore the context
completely .

Please do not ever use the word defau lt in a program designed for
humans . Defau lt is someth ing the mortgage went into r ight before the
evi l banker stole the Widow Parson 's house. There is an exhaustive l ist
of substitutes (previous, automatic , standard , etc .) in the Appendix to
How to Write a Manual .

37

38

Defaults should be declared, not assumed . Undeclared (not d isplayed)
defaults such as pressing R E T u R N for Yes (or for No?) wi l l cause
confusion and anger.

You need not declare E s c A P E every tim e you enable i t : E s c A P E always
gets you out of where you are, to where you came from, without
causing damage or confusion . As long as you adhere to that ben ign
def in it ion, you may fee l f ree to s l ip i n E s c A P E anywhere .

Displays

I nverse . There are many recent model home color TVs and older black
and white TV's that display inverse mode very poorly . I nverse mode can
be used effectively to accent screen material, particu larly on the l im ited
40 column screen of the Apple I I and I I Plus . It should be used creatively
i n business software where it is expected the user wi l l have a qual ity
mon itor . However, for software aimed for the home market, avoid
inverse mode un less the entire screen or several adjacent l i nes are
s imultaneously inversed .

Flashing mode should only be used to ind icate imminent destruction of
data or the program .

Focus. TV sets in particu lar, as wel l as many lower-pr iced monitors,
have very poor focus in the extreme corners . Use the corners for fam i l iar
character groupings (such as words), rather than clusters of unrelated
characters (such as numbers) . The human mind can f igure out that what
looks l ike "BASIC FUNCTIONS" is probably " BASIC FUNCTIONS", but
wi l l have less luck discern ing that what looks l ike " 1 500.00 " is real ly
' ' 7500 .00 ' ' , an error that could have far-reach ing effects . Keep i nput
l ines away from the corners for the same reason : the user needs to be
able to check each ind ividual character typed .

Jargon

Avoid computer jargon . A great deal of it has an unrelated emotional
charge . (Abort, for example .) The appendix to How to Write a Manual
has a comprehensive l ist of standard terms .

Keycap Names

Whenever possible . cal l keys by the names pr inted on them . written out
i n fu l l . Three of the keys do have a standard abbreviat ion :

First choice Second choice Abbreviation (last choice)

(gJ O P E N - A P P L E OA

lil S O L I D - A P P L E SA

(CONTROL) C O N T R O L CTRL

The Apple I I and Apple I I Plus have c T R L printed on the c o N T R o L key
and should therefore be prompted by " c T R L" as a f i rst cho ice .
(H owever, the Apple l i e has c o N T R o L spel led out on the c O N T R o L

key .) Fore ign- language keyboards have var ious special symbols for
sh ift, caps lock, tab and return ; use the " local " character in each
" local " version where possib le .

Abbreviations

Use abbreviations on ly where absolutely necessary or where an
abbreviation is better understood than what i t stands for, e .g . . 8 PM.

Programs should begin with a clear announcement of the tit le of the
program, authorsh ip credits, and a copyright not ice (i f any) .

The user should not be faced with page after page of instructions :
experience has proven that people s imply wi l l not read the m . Rather,
supply help as it is needed . One way of doing that is described in the
section on menus .

When you try your program out on new users, be sensit ive to the t imes
they need fundamental help in using the features of the programs . For
example, whi le you may have a program portion with detai led
explanations on why el l ipsoid analysis is so effective in f igur ing hog bel ly
futures . your user may never get there : you may not have provided
necessary help in how to enter pre l im inary data .

The standard help key on the Apple l i e and Apple Ill series computers is
either O P E N - A P P L E - ? or S O L I D - A P P L E - ? (The S H I F T should not be

39

40

requ i red : therefore, also accept o P E N - A P P L E -I and s o L r o ­

A P P L E - / .)

The standard he lp key on the Apple I I and Apple I I P lus, where
practical, is a question mark or slash, or else E s c A P E ? or E s c A P E I .

The normal location for he lp messages is the bottom of the screen .
Whether you use th is location or another, make your location
consistent . When using a separate help screen, c learly t i t le i t as a
"he lp" d isplay, and make the transit ions as smooth as possib le . When
he lp has been g iven, restore the screen to i ts or ig ina l condit ion .

Many of the menu gu idel ines may appear somewhat arbitrary-they are .
It appears only happy coincidence that so many developers are making
menus so s imi lar . As with many aspects of human inte rface standards,
what is important is that one standard be set so the poor user can get
used to one way of doing th ings . I t is not nearly so important what that
standard is .

A menu should display al l choices leg ibly, using numbers for menu
selection . Research has shown that people wi l l learn a number on an
often used menu as qu ickly as a letter, even though letters on the
surface appear more friendly . ("Was that E for Edit or E for Erase?")
Mnemonic letter schemes are a n ightmare t o translate, a n d wel l over half
of computer users are not touch-typists . For these reasons and others,
the vast majority of developers have settled on numbers .

I f you d o settle o n letters, for your own reasons, b e sure to b e
consistent : don't make the user use numbers for o n e section o f a
program and letters for another .

A l l sub-menus should allow the user to move to the next h igher menu by
pressing the E s c A P E key . The main menu shou ld not have an E s c A P E

key option, so that the user can feel confident about lean i ng on the
E s c A P E key to get al l the way back to the top level, without worry ing
about be ing bounced completely out of the program upon reach ing the
top leve l . Each menu should (redundantly) have a last opt ion that wi l l
move the user back to the next h ighest leve l . The Main Menu 's opt ion
should end the program .

The fol lowing is an example of a menu us ing the standard menu format :

Commodity Analyzer Futures Men u Select Future

1 . Pork Belly Futures

2 . Corn Futures

3 . Present Futures

4. Crystal Ball Futures

5 . Return to the Main Menu

Type your Selection (1 -5) and press RETU RN : _ . .

Options: E S C A P E to leave 0 P E N - A P P L E - ? for help

The exact number of l ines devoted to the three regions is not g raven i n
stone : the real standard being striven for is that there be three regions
with sol id l ines separating them, that these be devoted to tit les, choices
presented, and instructions. (The Apple I I and Apple I I P lus can not
produce a sol id l ine in text mode ; use either their hyphens or the ir short­
under l ine characters.

The t it le region can have up to three t it les (usual ly two i n forty-column
mode) . The middle title (o r lett tit le, if on ly 2) should be the name of the
menu, and it should contain the word, "menu . " Other d isp lays you wi l l
use, such as data entry and information, may have a s im i lar format : make
sure your user is clearly aware of what he is being asked to do . S im i larly,
on information screens, do not number itemized l ists, aster isk them :
otherwise, about 25% of your users wi l l try to type i n a "selection" .

You may use o r not use the other tit les as you see f it, but they should
have a consistent mean ing throughout a given appl ication .

Note that a f ie ld length longer than one has been al lowed for the number
input . A f ield length of only one character wi l l not give the user enough
feedback as to how the input works . Users who have typed the wrong
number wi l l often pan ic, assuming the computer has somehow locked
up. By giving them a few extra spaces, they can see from the action on
the screen what is going on and deduce what to do about it . S ince you
wi l l be stripping leading and trai l ing spaces (won ' t you?), this extra
freedom afforded the user wi l l not affect the program .

The instruction region doubles as the error message region .

41

One method you can use to enable the user to get descript ions of any
option is to have them type the number of the option , fol lowed by the
help key (o P E N - A P P L E - ? on the Apple l ie and Apple 1//, ? on the
Apple I I and I I P lus). The user is able to get extensive i nformat ion on ly
on those items of interest , without having to wade through masses of
in formation that are not needed.

Rout ines for doing these menus wi l l be avai lable from Apple : f i rst i n
Pascal for t h e Apple Ill i n t h e Screen Manager a n d i n BASIC f o r t h e
Apple I I ser ies with in t h e sample programs (Mag ic M e n u , D i s k M e n u ,
etc .) suppl ied with t h e Apple l i e Applesoft Tutorial a n d Reference
manuals package . The BASIC version is imp lemented with the h e l p
fac i l ity described above .

(The fol lowing is a repeat of an earl ier section . The keyword d isplay is
repeated here to make the document useful for reference .)

I n order to type a command o r l ist selection without prompti ng , the user
must)earn what words he can type at any one point in the program . This
learn ing problem can be overcome in a qu ite straightforward manner by
d isplaying a l ist of al l options then avai lab le . Typical ly , th is can be done
by creating a display s imi lar to the standard menu format , wi th the center
region devoted to the l ist of words:

Commodity Analyzer

Commands:

display

graph

compute

buy

sell

eat

delete

Belly Processes Pork Bel l ies

Inventory Types:

complete bellies

partial bellies

dancing bellies

Type your instruction and press RETU R N : _

Options: E S C A P E to leave O P E N - A P P L E - ? for help

As the avai lable options change, so do the options displayed . Thus, the
user knows at every point exactly what she can select . (The display of
command words could be made optional through the novice/expert flag ;
variable l ists of words, such as f i le names, should always be vis ib le .)

Informed When Are

When the computer wi l l be either carry ing out computations or
accessing the d isk for an extended period of t ime, a m essage shou ld be
left on the screen, instructing the user that the computer wi l l return
shortly (this is not the suggested message). Some per iodic change in
the screen, as a lengthening l ine of per iods (hence per iodic) should
occur so the user knows the computer has not s imply gone into an
end less loop somewhere . When the computation period is over, clearly
signal i t : s imply showing up with a b l inking cursor over in the corner
won 't do after a brief, 20 -minute pause .

43

© 1 982 Apple Computer Inc .

20525 M ariani Avenue
Cupert ino, Cal i forn ia 95014

(408) 996-1 01 0
TLX 1 7 1 - 576

A2F21 1 6 1 1 /82

------ -- --

030-0621 A

	Apple //e Design Guidelines

	Contents

	About This Guide

	Part I: Product Design Guidelines

	Part II: User Interface Guidelines

