WorryFree Computers   »   [go: up one dir, main page]

Jump to Content

Natural Language Processing

Natural Language Processing (NLP) research at Google focuses on algorithms that apply at scale, across languages, and across domains. Our systems are used in numerous ways across Google, impacting user experience in search, mobile, apps, ads, translate and more.

Our work spans the range of traditional NLP tasks, with general-purpose syntax and semantic algorithms underpinning more specialized systems. We are particularly interested in algorithms that scale well and can be run efficiently in a highly distributed environment.

Our syntactic systems predict part-of-speech tags for each word in a given sentence, as well as morphological features such as gender and number. They also label relationships between words, such as subject, object, modification, and others. We focus on efficient algorithms that leverage large amounts of unlabeled data, and recently have incorporated neural net technology.

On the semantic side, we identify entities in free text, label them with types (such as person, location, or organization), cluster mentions of those entities within and across documents (coreference resolution), and resolve the entities to the Knowledge Graph.

Recent work has focused on incorporating multiple sources of knowledge and information to aid with analysis of text, as well as applying frame semantics at the noun phrase, sentence, and document level.

Recent Publications

Connecting Language Technologies with Rich, Diverse Data Sources Covering Thousands of Languages
Sebastian Ruder
Julia Kreutzer
Clara Rivera
Ishank Saxena
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Preview abstract Contrary to common belief, there are rich and diverse data sources available for many thousands of languages, which can be used to develop technologies for these languages. In this paper, we provide an overview of some of the major online data sources, the types of data that they provide access to, potential applications of this data, and the number of languages that they cover. Even this covers only a small fraction of the data that exists; for example, printed books are published in many languages but few online aggregators exist. View details
Preview abstract Sequence labeling is a core task in text understanding for IE/IR systems. Text generation models have increasingly become the go-to solution for such tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-k predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model. View details
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines
Yuchen Li
Alexandre Kirchmeyer
Aashay Mehta
Yilong Qin
Andrej Risteski
International Conference on Machine Learning (2024) (to appear)
Preview abstract Autoregressive language models are the currently dominant paradigm for text generation, however they have some fundamental limitations that cannot be remedied by scale ---for example inherently sequential and unidirectional generation. While alternate classes of models have been explored, we have limited mathematical understanding of their fundamental power and limitations. In this paper we focus on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical framework for analyzing and improving such models which sheds light on questions of sample complexity and inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregressive models. We run careful ablation experiments to give recommendations on key design choices, and make fine-grained observations on the common error modes in connection with our theory. Our mathematical analyses and empirical observations characterize both potentials and limitations of this approach, and can be applied to future works on improving understanding and performance of GMLMs. View details
Preview abstract End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences, converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of homophones or homographs. We describe the mitigation strategies that have been used for these problems in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation techniques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with an optimistic outlook for bringing speech technologies to many more languages by combining these strands of research. View details
LinguaMeta: Unified Metadata for Thousands of Languages
Uche Okonkwo
Emily Drummond
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Preview abstract We introduce LinguaMeta, a unified resource for language metadata for thousands of languages, including language codes, names, number of speakers, writing systems, countries, official status, coordinates, and language varieties. The resources are drawn from various existing repositories and supplemented with our own research. Each data point is tagged for its origin, allowing us to easily trace back to and improve existing resources with more up-to-date and complete metadata. The resource is intended for use by researchers and organizations who aim to extend technology to thousands of languages. View details
Demystifying Embedding Spaces using Large Language Models
Yinlam Chow
Jihwan Jeong
Lior Shani
Martin Mladenov
The Twelfth International Conference on Learning Representations (2024)
Preview abstract Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing large language models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs. View details